窃电行为检测方法研究综述
CSTR:
作者:
作者单位:

(1.国网湖南省电力有限公司,湖南 长沙 410004; 2.湖南大学电气与信息工程学院,湖南 长沙 410082)

通讯作者:

高云鹏(1978—),男,教授,博士生导师,主要从事电能计量、智能信息处理方面的研究;E?mail: gfront@126.com

中图分类号:

TM715

基金项目:

国网湖南省电力有限公司科技项目(5216AG21001T);国家自然科学基金(51777061)


Summary of research on electricity theft behavior detection methods
Author:
Affiliation:

(1.State Grid Hunan Electric Power Co.,Ltd.,Changsha 410004, China; 2. College of Electrical and Information Engineering,Hunan University, Changsha 410082, China.)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [80]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    电力系统中因窃电行为对电网公司造成的非技术损失一直是电网公司迫切解决的难题。伴随电网大量部署智能电表,利用电力计量自动化系统采集的用户侧数据开展窃电行为准确检测受到研究者和电网公司的普遍关注。首先,介绍用户窃电行为基本分类情况、评价指标与现有窃电检测数据集;然后,从基于电网状态分析、机器学习、博弈论以及硬件4个方面对现有窃电行为检测方法进行全方面整理、剖析与对比,总结出各方法基本思路和优缺点;最后,对当前窃电行为检测领域研究中存在的挑战深入分析,并对未来研究工作重点进行展望。

    Abstract:

    The non?technical losses caused by electricity theft in the power system have always been a pressing issue for power grid companies to urgently address. With the deployment of a large number of smart meters in the power grid, the use of user?side data collected by the power metering automation system to accurately detect electricity theft has attracted widespread attention from researchers and power grid companies. Firstly, the basic classification of users' electricity stealing behavior, evaluation indicators and existing electricity theft detection data sets are introduced. Then, from the four aspects of grid state analysis, machine learning, game theory and hardware, the existing detection methods of electricity theft behavior are comprehensively sorted, analyzed and compared, and the basic ideas, advantages and disadvantages of each method are summarized. Finally, the current challenges in the field of electricity theft behavior detection are deeply analyzed, and a prospective outlook on the focus of future research work is provided.

    参考文献
    [1] 张衡,张沈习,程浩忠,等.Stackelberg博弈在电力市场中的应用研究综述[J].电工技术学报,2022,37(13):3250? 3262. ZHANG Heng,ZHANG Shenxi,CHENG Haozhong,et al.A state?of?the?art review on Stackelberg game and its applications in power market[J].Transactions of China Electrotechnical Society,2022,37(13):3250?3262.
    [2] 陈启鑫,郑可迪,康重庆,等.异常用电的检测方法:评述与展望[J].电力系统自动化,2018,42(17):189?199. CHEN Qixin,ZHENG Kedi,KANG Chongqing,et al.Detection methods of abnormal electricity consumption behaviors:review and prospect[J].Automation of Electric Power Systems,2018,42(17):189?199.
    [3] IBRAHEM M I,MAHMOUD M M E A,ALSOLAMI F,et al.Electricity?theft detection for change?and?transmit advanced metering infrastructure[J].IEEE Internet of Things Journal,2022,9(24):25565?25580.
    [4] PATIL N V,KANASE R S,BONDAR D R,et al.Intelligent energy meter with advanced billing system and electricity theft detection[C]// International Conference on Data Management,Analytics and Innovation (ICDMAI),Pune,India,2017.
    [5] 南方+.茂名破获20年来最大团伙窃电案,案值超两百万![EB/OL].https://www.sohu.com/a/348239613_810830,2019?10?20.South+.Maoming cracked the largest gang electricity theft case in 20 years, worth more than 2 million yuan![EB/OL].https://www.sohu.com/a/348239613_810830,2019?10?20.
    [6] 福建日报.全国首例智能电表高科技特大窃电案告破[EB/OL].https://news.bjx.com.cn/html/20131209/478446.shtml,2013?12?09. Fujian Daily.The country's first intelligent meter high?tech electricity theft case was solved[EB/OL].https://news.bjx.com.cn/html/20131209/478446.shtml,2013?12?09.
    [7] 新华社.江苏破获特大盗电“挖”比特币案件案值近2?000万元[EB/OL].https://www.163.com/tech/article/EJSLMB6B00097U7R.html,2019?07?12. Xinhua News Agency.The case of "digging" bitcoin in Jiangsu Province is worth nearly 20 million yuan[EB/OL].https://www.163.com/tech/article/EJSLMB6B00097U7R.html,2019?07?12.
    [8] CUI X,LIU S,LIN Z,et al.Two?step electricity theft detection strategy considering economic return based on convolutional autoencoder and improved regression algorithm[J].IEEE Transactions on Power Systems,2022,37(3):2346?2359.
    [9] NABIL M,ISMAIL M,MAHMOUD M M E A,et al.PPETD:privacy?preserving electricity theft detection scheme with load monitoring and billing for AMI networks[J].IEEE Access,2019,7:96334?96348.
    [10] VIEGAS J L,ESTEVES P R,MELíCIO R,et al.Solutions for detection of non?technical losses in the electricity grid:A review[J].Renewable and Sustainable Energy Reviews,2017,80:1256?1268.
    [11] PEREIRA J,SARAIVA F.A comparative analysis of unbalanced data handling techniques for machine learning algorithms to electricity theft detection[C]//IEEE Congress on Evolutionary Computation (CEC),Glasgow,United Kingdom,2020.
    [12] HUANG S H,LO Y L,LU C N.Non?technical loss detection using state estimation and analysis of variance[J].IEEE Transactions on Power Systems,2013,28(3):2959?2966.
    [13] HAN W L,XIAO Y.FNFD:a fast scheme to detect and verify non?technical loss fraud in smart grid[C]//Proceedings of the 2016 ACM International Workshop on Traffic Measurements for Cybersecurity,Xi'an,China,2016.
    [14] 孔晶.配电网窃电技术与反窃电措施的研究[D].济南:山东大学,2018. KONG Jing.Research on power stealing technology and anti?stealing measures in distribution network[D].Jinan:Shandong University,2018.
    [15] 丛干胜.低压配电用户防窃电问题及解决措施[D].济南:山东大学,2018. CONG Gansheng.Anti?stealing power problems and solutions of low voltage distribution users[D].Jinan:Shandong University,2018.
    [16] 匡红刚,易鹏飞,邹平,等.常见窃电手段分析及反窃电装置设计[J].电工技术,2020(4):64?65. KUANG Honggang,YI Pengfei,ZOU Ping,et al.Analysis of common electricity stealing methods and design of anti?stealing electricity device[J].Electric Engineering,2020(4):64?65.
    [17] 徐为,霍晓艳,严璐,等.供电企业窃电方式分析及反窃电案例研究[J].自动化应用,2020(8):90?92. XU Wei,HUO Xiaoyan,YAN Lu,et al.Analysis of electricity stealing methods of power supply companies and case study of anti?electricity stealing[J].Automation Application,2020(8):90?92.
    [18] 庄池杰,张斌,胡军,等.基于无监督学习的电力用户异常用电模式检测[J].中国电机工程学报,2016,36(2):379?387. ZHUANG Chijie,ZHANG Bin,HU Jun,et al.Anomaly detection for power consumption patterns based on unsupervised learning[J].Proceedings of the CSEE,2016,36(2):379?387.
    [19] GLAUNER P,MEIRA J A,DOLBERG L,et al.Neighborhood features help detecting non?technical losses in big data sets[C].Proceedings of the 3rd IEEE/ACM International Conference on Big Data Computing Applications and Technologies (BDCAT),Shanghai,China,2016.
    [20] ZHENG Z,YANG Y,NIU X,et al.Wide and deep convolutional neural networks for electricity?theft detection to secure smart grids[J].IEEE Transactions on Industrial Informatics,2018,14(4):1606?1615.
    [21] YAO D,WEN M,LIANG X,et al.Energy theft detection with energy privacy preservation in the smart grid[J].IEEE Internet of Things Journal,2019,6(5):7659?7669.
    [22] NIZAR A H,DONG Z Y,WANG Y.Power utility nontechnical loss analysis with extreme learning machine method[J].IEEE Transactions on Power Systems,2008,23(3):946?955.
    [23] BUZAU M,TEJEDOR?AGUILERA J,CRUZ?ROMERO P,et al.Hybrid deep neural networks for detection of non?technical losses in electricity smart meters[J].IEEE Transactions on Power Systems,2020,35(2):1254?1263.
    [24] JOKAR P,ARIANPOO N,LEUNG V C M.Electricity theft detection in AMI using Customers' consumption patterns[J].IEEE Transactions on Smart Grid,2016,7(1):216?226.
    [25] ZANETTI M,JAMHOUR E,PELLENZ M,et al.A Tunable fraud detection system for advanced metering infrastructure using short?lived patterns[J].IEEE Transactions on Smart Grid,2019,10(1):830?840.
    [26] 金晟,苏盛,薛阳,等.数据驱动窃电检测方法综述与低误报率研究展望[J].电力系统自动化,2022,46(1):3?14. JIN Sheng,SU Sheng,XUE Yang,et al.Review on data?drive based electricity theft detection method and research prospect for low false positive rate[J].Automation of Electric Power Systems,2022,46(1):3?14.
    [27] BUZAU M,TEJEDOR?AGUILERA J,CRUZ?ROMERO P,et al.Hybrid deep neural networks for detection of non?technical losses in electricity smart meters[J].IEEE Transactions on Power Systems,2020,35(2):1254?1263.
    [28] NIZAR A H,DONG Z Y,WANG Y.Power utility nontechnical loss analysis with extreme learning machine method[J].IEEE Transactions on Power Systems,2008,23(3):946?955.
    [29] ISSDA.Data from the commission for energy regulation (CER)?smart metering project[EB/OL].http://www.ucd.ie/issda/data/commissionforenergyregulationcer,2018?06?15.
    [30] PRIYANKA M C,KUMAR M A,SHEKAR E C,et al.GSM based electricity theft identification in distribution system[J].International Journal of Research in Engineering,Science and Management (IJRESM),2019,2(4):27?29.
    [31] MUJEEB S,JAVAID N,AHMED A,et al.Electricity theft detection with automatic labeling and enhanced RUSBoost classification using differential evolution and jaya algorithm[J].IEEE Access,2021,9:128521?128539.
    [32] 唐秋杭,李涛,陈华东.基于载波通信的电力终端数据采集检测技术研究[J].电网与清洁能源,2022,38(3):74?79. TANG Qiuhang,LI Tao,CHEN Huadong. Research on data acquisition and detection technology of power terminal based on carrier communication[J].Power System and Clean Energy,2022,38(3):74?79.
    [33] BIN?HALABI A,NOUH A,ABOUELELA M.Remote detection and identification of illegal consumers in power grids[J].IEEE Access,2019,7:71529?71540.
    [34] SALINAS S A,LI P.Privacy?preserving energy theft detection in microgrids:a state estimation approach[J].IEEE Transactions on Power Systems,2016,31(2):883?894.
    [35] LEITE J B,MANTOVANI J R S.Detecting and locating non?technical losses in modern distribution networks[J].IEEE Transactions on Smart Grid,2018,9(2):1023?1032.
    [36] RAGGI L,TRINDADE F,CARNELOSSI DA CUNHA V,et al.Non?technical loss identification by using data analytics and customer smart meters[J].IEEE Transactions on Power Delivery,2020,35(6):2700?2710.
    [37] KRISHNA V B,WEAVER G A,SANDERS W H.PCA?based method for detecting integrity attacks on advanced metering infrastructure[J].Quantitative Evaluation of Systems,2015,9259:70?85.
    [38] KRISHNA V B,GUNTER C A,SANDERS W H.Evaluating detectors on optimal attack vectors that enable electricity theft and DER fraud[J].IEEE Journal of Selected Topics in Signal Processing,2018,12(4):790?805.
    [39] KRISHNA V B,LEE K,WEAVER G A,et al.F?DETA:a framework for detecting electricity theft attacks in smart grids[C]//46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN),Toulouse,France,2016.
    [40] NAGI J,KEEM SIAH Y,SIEH KIONG T,et al.Improving SVM?based nontechnical loss detection in power utility using the fuzzy inference system[J].IEEE Transactions on Power Delivery,2011,26(2):1284?1285.
    [41] NAGI J,YAP K S,TIONG S K,et al.Nontechnical loss detection for metered customers in power utility using support vector machines[J].IEEE Transactions on Power Delivery,2010,25(2):1162?1171.
    [42] GUERRERO J I,MONEDERO I,BISCARRI F,et al.Non?technical losses reduction by improving the inspections accuracy in a power utility[J].IEEE Transactions on Power Systems,2018,33(2):1209?1218.
    [43] JINDAL A,DUA A,KAUR K,et al.Decision tree and SVM?based data analytics for theft detection in smart grid[J].IEEE Transactions on Industrial Informatics,2016,12(3):1005?1016.
    [44] LI S,HAN Y H,YAO X,et al.Electricity theft detection in power grids with deep learning and random forests[J].Journal of Electrical And Computer Engineering,2019,2019:4136874.
    [45] PUNMIYA R,CHOE S.Energy theft detection using gradient boosting theft detector with feature engineering?based preprocessing[J].IEEE Transactions on Smart Grid,2019,10(2):2326?2329.
    [46] 陈钢,李德英,陈希祥.基于改进XGBoost模型的低误报率窃电检测方法[J].电力系统保护与控制,2021,49(23):178?186. CHEN Gang,LI Deying,CHEN Xixiang.Detection method of electricity theft with low false alarm rate based on an XGBoost model[J].Power System Protection and Control,2021,49(23):178?186.
    [47] MESSINIS G M,RIGAS A E,HATZIARGYRIOU N D.A hybrid method for non?technical loss detection in smart distribution grids[J].IEEE Transactions on Smart Grid,2019,10(6):6080?6091.
    [48] 游文霞,申坤,杨楠,等.基于AdaBoost集成学习的窃电检测研究[J].电力系统保护与控制,2020,48(19):151?159. YOU Wenxia,SHEN Kun,YANG Nan,et al.Research on electricity theft detection based on AdaBoost ensemble learning[J].Power Systems Protection and Control,2020,48(19):151?159.
    [49] 游文霞,申坤,杨楠,等.基于Bagging异质集成学习的窃电检测[J].电力系统自动化,2021,45(2):105?113. YOU Wenxia,SHEN Kun,YANG Nan,et al.Electricity theft detection based on Bagging heterogeneous ensemble learning[J].Power Systems Protection and Control,2021,45(2):105?113.
    [50] CUI L,GUO L,GAO L X,et al.A covert electricity?theft cyberattack against machine learning?based detection models[J].IEEE Transactions on Industrial Informatics,2022,18(11):7824?7833.
    [51] KANG L Y,SHANG Y,ZHANG M X,et al.Research on monitoring technology of power stealing behavior in bitcoin mining based on analyzing electric energy data[C]//International Conference on New Energy and Power Engineering (ICNEPE),Sanya,China,2021.
    [52] 史博轩,林绅文,毛洪亮.基于网络流量的挖矿行为检测识别技术研究[J].计算机应用研究,2022,39(7):1956?1960. SHI Boxuan,LIN Shenwen,MAO Hongliang.Research on mining behavior detection and identification technology based on network traffic[J].Application Research of Computers,2022,39(7):1956?1960.
    [53] 邓鹏,刘敏.基于改进聚类和RBF神经网络的台区电网线损计算研究[J].智慧电力,2021,49(2):107?113. DENG Peng,LIU Min.Power line loss calculation in low voltage region based on improved clustering algorithm and RBF neural network[J].Smart Power,2021,49(2):107?113.
    [54] 郑应俊,杨艺宁,舒一飞,等.基于边缘计算的低压用户窃电检测[J].电力系统自动化,2022,46(11):111?120. ZHENG Yingjun,YANG Yining,SHU Yifei,et al.Electricity theft detection for low?voltage users based on edge computing[J].Automation of Electric Power Systems,2022,46(11):111?120.
    [55] 刘永光,谭煌,李志鹏.一种基于电能表误差和窃电分析的线损分层定位方法[J].电测与仪表,2022,59(9):188?194. LIU Yongguang,TAN Huang,LI Zhipeng.A hierarchical line loss location method based on the analysis of electricitymeter error and electricity stealing[J].Electrical Measurement & Instrumentation,2022,59(9):188?194.
    [56] GAO Y,FOGGO B,YU N.A physically inspired data?driven model for electricity theft detection with smart meter data[J].IEEE Transactions on Industrial Informatics,2019,15(9):5076?5088.
    [57] DENG Y Y,ZHU K,WANG R,et al.Real?time detection of false data injection attacks based on load forecasting in smart grid[C]//IEEE International Conference on Communications,Control,and Computing Technologies for Smart Grids,Beijing,China,2019.
    [58] 赵文清,沈哲吉,李刚.基于深度学习的用户异常用电模式检测[J].电力自动化设备,2018,38(9):34?38. ZHAO Wenqing,SHEN Zheji,LI Gang.Anomaly detection for power consumption pattern based on deep learning[J].Electric Power Automation Equipment,2018,38(9):34?38.
    [59] 张承智,肖先勇,郑子萱.基于实值深度置信网络的用户侧窃电行为检测[J].电网技术,2019,43(3):1083?1091. ZHANG Chengzhi,XIAO Xianyong,ZHENG Zixuan.Electricity Theft detection for customers in power utility based on real?valued deep belief network[J].Power System Technology,2019,43(3):1083?1091.
    [60] 滕伟,黄乙珂,吴仕明,等.基于XGBoost与LSTM的风力发电机绕组温度预测[J].中国电力,2021,54(6):95?103. TENG Wei,HUANG Yike,WU Shiming,et al.Wind turbine generator winding temperature prediction based on XGBoost and LSTM[J].Electric Power,2021,54(6):95?103.
    [61] 孙毅,李世豪,崔灿,等.基于高斯核函数改进的电力用户用电数据离群点检测方法[J].电网技术,2018,42(5):1595?1606. SUN Yi,LI Shihao,CUI Can,et al.Improved outlier detection method of power consumer data based on Gaussian kernel function[J].Power System Technology,2018,42(5):1595?1606.
    [62] BISWAS P P,CAI H,ZHOU B,et al.Electricity theft pinpointing through correlation analysis of master and individual meter readings[J].IEEE Transactions on Smart Grid,2020,11(4):3031?3042.
    [63] ZHENG K,CHEN Q,WANG Y,et al.A novel combined data?driven approach for electricity theft detection[J].IEEE Transactions on Industrial Informatics,2019,15(3):1809?1819.
    [64] 殷涛,薛阳,杨艺宁,等.基于向量自回归模型的高损线路窃电检测[J].中国电机工程学报,2022,42(3):1015?1024. YIN Tao,XUE Yang,YANG Yining,et al.Electricity theft detection of high?loss line with vector autoregression[J].Proceedings of the CSEE,2022,42(3):1015?1024.
    [65] TACóN J,MELGAREJO D,RODRíGUEZ F,et al.Semisupervised approach to non?technical losses detection[J].Springer Berlin Heidelberg,2014,8827:698?705.
    [66] LU X,ZHOU Y,WANG Z,et al.Knowledge embedded semi?supervised deep learning for detecting non?technical losses in the smart grid[J].Energies,2019,12(18):3452.
    [67] HU T,GUO Q,SHEN X,et al.Utilizing Unlabeled data to detect electricity fraud in AMI:a semisupervised deep learning approach[J].IEEE Transactions on Neural Networks and Learning Systems,2019,30(11):3287?3299.
    [68] ASLAM Z,AHMED F,ALMOGREN A,et al.An attention guided semi?supervised learning mechanism to detect electricity frauds in the distribution systems[J].IEEE Access,2020,8:221767?221782.
    [69] 李和平,胡占义,吴毅红,等.基于半监督学习的行为建模与异常检测[J].软件学报,2007(3):527?537. LI Heping,HU Zhanyi,WU Yihong,et al.Behavior modeling and abnormality detection based on semi?supervised learning method[J].Journal of Software,2007(3):527?537.
    [70] CARDENAS A A,AMIN S,SCHWARTZ G,et al.A game theory model for electricity theft detection and privacy?aware control in AMI systems[C]//50th Annual Allerton Conference on Communication,Control,and Computing (Allerton),UIUC,Illinois,USA,2012.
    [71] AMIN S,SCHWARTZ G A,CARDENAS A A,et al.Game?theoretic models of electricity theft detection in smart utility networks providing new capabilities with advanced metering infrastructure[J].IEEE Control Systems Magazine,2015,35(1):66?81.
    [72] LIU Y,HU S,HUANG H,et al.Game?theoretic market?driven smart home scheduling considering energy balancing[J].IEEE Systems Journal,2017,11(2):910?921.
    [73] WEI L,SUNDARARAJAN A,SARWAT A I,et al.A distributed intelligent framework for electricity theft detection using benford's law and stackelberg game[C]//Resilience Week (RWS),Wilmington,Delaware,USA,2017.
    [74] HENRIQUES H O,BARBERO A P L,RIBEIRO R M,et al.Development of adapted ammeter for fraud detection in low?voltage installations[J].Measurement,2014,56:1?7.
    [75] XIAO Z,XIAO Y,DU D H C.Exploring malicious meter inspection in neighborhood area smart grids[J].IEEE Transactions on Smart Grid,2013,4(1):214?226.
    [76] XIA X,LIANG W,XIAO Y,et al.BCGI:afast approach to detect malicious meters in neighborhood area smart grid[C]//IEEE International Conference on Communications (ICC),London,UK,2015.
    [77] XIA X,LIANG W,XIAO Y,et al.A difference?comparison? based approach for malicious meter inspection in neighborhood area smart grids[C]//IEEE International Conference on Communications (ICC),London,UK,2015.
    [78] XIA X,XIAO Y,LIANG W.ABSI:an adaptive binary splitting algorithm for malicious meter inspection in smart grid[J].IEEE Transactions on Information Forensics and Security,2019,14(2):445?458.
    [79] XIA X,XIAO Y,LIANG W,et al.GTHI:a heuristic algorithm to detect malicious users in smart grids[J].IEEE Transactions on Network Science and Engineering,2018,7(2):805?816.
    [80] ZHOU Y,LIU Y,HU S.Energy theft detection in multi?tenant data centers with digital protective relay deployment[J].IEEE Transactions on Sustainable Computing,2018,3(1):16?29.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

肖 宇,叶 志,黄 瑞,等.窃电行为检测方法研究综述[J].电力科学与技术学报,2023,38(4):1-14.
XIAO Yu, YE Zhi, HUANG Rui, et al. Summary of research on electricity theft behavior detection methods[J]. Journal of Electric Power Science and Technology,2023,38(4):1-14.

复制
分享
文章指标
  • 点击次数:572
  • 下载次数: 1830
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2023-11-06
文章二维码