基于多尺度卷积神经网络的变压器故障诊断方法
作者:
作者单位:

(1.国网浙江省电力有限公司杭州市余杭区供电公司,浙江 杭州 311100;2.杭州电力设备制造有限公司余杭群力成套电气制造分公司,浙江 杭州 311100;3.东北电力大学机械工程学院,吉林 吉林 132011)

作者简介:

通讯作者:

王辉东(1974—),男,硕士,高级工程师,主要从事电力设备状态评价与检测方面的研究;E?mail:18244891@qq.com

中图分类号:

TM411

基金项目:

吉林省科技发展计划(2021050959RQ)


A transformer fault diagnosis method based on multiscale 1DCNN
Author:
Affiliation:

(1. Yuhang District Power Supply Company, State Grid Zhejiang Electric Power Co., Ltd., Hangzhou 311100, China;2. Yuhang Qunli Complete Electric Manufacturing Branch, Hangzhou Electric Power Equipment Manufacturing Co., Ltd.,Hangzhou 311100, China;3.School of Mechanical Engineering,Northest Electric Power University, Jilin 132011, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高变压器故障识别的诊断精度,提出一种基于多尺度卷积神经网络模型的变压器故障诊断方法。首先,在1DCNN结构基础上设计2个多尺度卷积模块,构造变压器故障识别模型的总体结构。其次,针对样本特征较少问题,采用基于比值法的特征扩充方法,将样本特征由5维增强至25维;针对故障样本量少以及故障间样本数分布不平衡问题,采用基于对抗生成网络的样本数增强方法,生成大量模拟样本。最后,利用改造后的数据集对所设计的模型进行训练与测试。结果表明,模型平均准确率为93.24%,与相关主流方法在不同数据集下实验对比,本模型表现效果良好。

    Abstract:

    In order to improve the diagnostic accuracy of transformer fault, a transformer fault diagnosis method based on the multi?scale convolutional neural network model is proposed. Firstly, two multi?scale convolutional modules are designed on the basis of the 1DCNN structure, and the overall structure of the transformer fault identification model is constructed. Secondly, to handle the problem of less sample features, the feature expansion method based on the ratio method is adopted to enhance the sample features from 5 dimensions to 25 dimensions. To solve the small sample size of faults and uneven distribution of sample numbers between faults, a sample number enhancement method based on adversarial generation network is adopted, and a large number of simulated samples are generated. Finally, the modified dataset was used to train and test the designed model. The results show that the average accuracy of the model is 93.24%, and the model performs well compared with the relevant mainstream methods under different datasets.

    参考文献
    相似文献
    引证文献
引用本文

王辉东,姚海燕,郭 强,等.基于多尺度卷积神经网络的变压器故障诊断方法[J].电力科学与技术学报,2023,38(4):104-112.
WANG Huidong, YAO Haiyan, GUO Qiang, et al. A transformer fault diagnosis method based on multiscale 1DCNN[J]. Journal of Electric Power Science and Technology,2023,38(4):104-112.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-11-06
  • 出版日期:
文章二维码