基于粒子群优化算法的空调负荷灰箱模型辨识
作者:
作者单位:

(杭州电子科技大学自动化学院,浙江 杭州 310018)

作者简介:

通讯作者:

夏宇栋(1988—),男,博士,副教授,主要从事建筑暖通设备建模仿真、控制、调度优化及故障诊断等研究;E?mail:ydxia@hdu.edu.cn

中图分类号:

TM9

基金项目:

浙江省自然科学基金(LQ19E060007);浙江省重点研发计划(2020C01164)


Identification of grey box model for air conditioning load based on particle swarm optimization algorithm
Author:
Affiliation:

(School of Automation,Hangzhou Dianzi University, Hangzhou 310018, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    较高精度的空调负荷模型是开发实施有效空调控制策略的重要依据,其有利于促进减小电力能源消耗以节约用电成本。首先,通过对建筑构造、室内外环境和气象因素等影响分析,搭建可用于预测空调负荷的灰箱模型,即三阶的等效热参数模型以及二阶的等效湿阻模型;接着,通过最小化模型输出室内温湿度数据与室内实测温湿度采样数据之间的误差建立优化目标函数;然后,提出并使用基于粒子群优化算法的参数辨识方法获取灰箱模型关键参数。实验研究表明,辨识得到的等效热阻和湿阻模型能准确地反映室内温湿度分布和变化特性,具有预测空调负荷的实际应用价值。

    Abstract:

    A higher?precision air conditioning load model serves as a crucial foundation for developing and implementing effective air conditioning control strategies, which is conducive to reducing electricity consumption and saving power costs. Firstly, by analyzing the impact of building structure, indoor and outdoor environment, and meteorological factors, a grey?box model is constructed for predicting air conditioning loads.. This model consists of a third?order equivalent thermal parameter model and a second?order equivalent moisture resistance model. Subsequently, the optimization objective function is established by minimizing the error between the indoor temperature and humidity output from the model and the measured temperature and humidity. Then, a parameter identification method based on the particle swarm optimization (PSO) algorithm is proposed and employed to obtain the crucial parameters of the grey?box model. Experimental studies demonstrate that the identified equivalent thermal resistance and moisture resistance models accurately reflect the indoor temperature and humidity distribution and variation characteristics, thus possessing practical application value in predicting air conditioning loads.

    参考文献
    相似文献
    引证文献
引用本文

朱 明,夏宇栋,常 凯,等.基于粒子群优化算法的空调负荷灰箱模型辨识[J].电力科学与技术学报,2023,38(4):214-221.
ZHU Ming, XIA Yudong, CHANG Kai, et al. Identification of grey box model for air conditioning load based on particle swarm optimization algorithm[J]. Journal of Electric Power Science and Technology,2023,38(4):214-221.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-11-06
  • 出版日期:
文章二维码