基于粒子群优化算法的空调负荷灰箱模型辨识
CSTR:
作者:
作者单位:

(杭州电子科技大学自动化学院,浙江 杭州 310018)

通讯作者:

夏宇栋(1988—),男,博士,副教授,主要从事建筑暖通设备建模仿真、控制、调度优化及故障诊断等研究;E?mail:ydxia@hdu.edu.cn

中图分类号:

TM9

基金项目:

浙江省自然科学基金(LQ19E060007);浙江省重点研发计划(2020C01164)


Identification of grey box model for air conditioning load based on particle swarm optimization algorithm
Author:
Affiliation:

(School of Automation,Hangzhou Dianzi University, Hangzhou 310018, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • | | | |
  • 文章评论
    摘要:

    较高精度的空调负荷模型是开发实施有效空调控制策略的重要依据,其有利于促进减小电力能源消耗以节约用电成本。首先,通过对建筑构造、室内外环境和气象因素等影响分析,搭建可用于预测空调负荷的灰箱模型,即三阶的等效热参数模型以及二阶的等效湿阻模型;接着,通过最小化模型输出室内温湿度数据与室内实测温湿度采样数据之间的误差建立优化目标函数;然后,提出并使用基于粒子群优化算法的参数辨识方法获取灰箱模型关键参数。实验研究表明,辨识得到的等效热阻和湿阻模型能准确地反映室内温湿度分布和变化特性,具有预测空调负荷的实际应用价值。

    Abstract:

    A higher?precision air conditioning load model serves as a crucial foundation for developing and implementing effective air conditioning control strategies, which is conducive to reducing electricity consumption and saving power costs. Firstly, by analyzing the impact of building structure, indoor and outdoor environment, and meteorological factors, a grey?box model is constructed for predicting air conditioning loads.. This model consists of a third?order equivalent thermal parameter model and a second?order equivalent moisture resistance model. Subsequently, the optimization objective function is established by minimizing the error between the indoor temperature and humidity output from the model and the measured temperature and humidity. Then, a parameter identification method based on the particle swarm optimization (PSO) algorithm is proposed and employed to obtain the crucial parameters of the grey?box model. Experimental studies demonstrate that the identified equivalent thermal resistance and moisture resistance models accurately reflect the indoor temperature and humidity distribution and variation characteristics, thus possessing practical application value in predicting air conditioning loads.

    参考文献
    [1] 陈剑波,李福麟,高峰.基于建筑墙体从空调负荷侧进行用电移峰填谷初探[J].建筑节能,2022,50(5):53?58. CHEN Jianbo,LI Fulin,GAO Feng.Preliminary discovery of electric peak shaving and valley filling in load?side of HVAC based on the envelope[J].Building Energy Effciency,2022,50(5):53?58.
    [2] 关春敏,尚长鸣.公共建筑能耗影响因素与调研分析[J].煤气与热力,2022,42(2):13?16+21. GUAN Chunmin,SHANG Changmin.Influencing factors of energy consumption of public buildings and investigation analysis[J].Gas & Heat,2022,42(2):13?16+21.
    [3] 范睿,孙润稼,刘玉田.考虑空调负荷需求响应的负荷恢复量削减方法[J].电工技术学报,2022,37(11):2869?2877. FAN Rui,SUN Runjia,LIU Yutian.A load restoration amount reduction method considering demand response of air conditioning loads[J].Transactions of China Electrotechnical Society,2022,37(11):2869?2877.
    [4] TBAILEH A,BHATTARAI B,PRATT R.Transactive HVAC agent?design and performance evaluation[C]//IEEE Power & Energy Society General Meeting (PESGM),Washington,DC,USA,2021.
    [5] 郭亦宗,冯斌,岳铂雄,等.负荷聚合商模式下考虑需求响应的超短期负荷预测[J].电力系统自动化,2021,45(1):79?87. GUO Yizong,FENG Bin,YUE Baixiong,et al.Ultra? short?term load forecasting considering demand response in load aggregator mode[J].Automation of Electric Power Systems,2021,45(1):79?87.
    [6] 石磊.基于空调负荷总量控制的空调系统运行规划数学模型初探[J].现代建筑电气,2020,11(7):1?3+8. SHI Lei.Study on mathematical model of air conditioning system operation planning based on total air conditioning load control[J].Modern Architecture Electric,2020,11(7):1?3+8.
    [7] 任建吉,位慧慧,邹卓霖,等.基于CNN?BiLSTM?Attention的超短期电力负荷预测[J].电力系统保护与控制,2022,50(8):108?116. REN Jianji,WEI Huihui,ZOU Zhuolin,et al.Ultra? short?term power load forecasting based on CNN? BiLSTM?Attention[J].Power System Protection and Control,2022,50(8):108?116.
    [8] 白东壮,田世明,邹毅豪,等.基于FDA的居民用户空调用电行为分类分析方法[J].智慧电力,2022,50(3):44?49. BAI Dongzhuang,TIAN Shiming,ZOU Yihao,et al.Classification analysis method of residential air conditioning electricity consumption behavior based on functional data analysis model[J].Smart Power,2022,50(3):44?49.
    [9] 康靖,李雨桐,郝斌,等.多联机空调柔性负荷参与电力系统需求响应的实证研究[J].供用电,2022,39(8):39?46. KANG Jing,LI Yutong,HAO Bin,et al.Empirical study on flexible load of multi connected air conditioning participating in power system demand response[J].Distribution & Utilization,2022,39(8):39?46.
    [10] 赵兵,王增平,孙毅.计及差异化用能需求的集群空调负荷优化控制策略[J].电测与仪表,2021,58(9):22?27. ZHAO Bing,WANG Zengping,SUN Yi.An optimal control strategy of cluster air?conditioning loads considering differentiated energy consumption demand[J].Electrical Measurement & Instrumentation,2021,58(9):22?27.
    [11] ZHU D,HONG T,YAN D,et al.A detailed loads comparison of three building energy modeling programs:EnergyPlus,DeST and DOE?2.1E[J].Building Simulation,2013,6:323?335.
    [12] ABDEL?DAYEM A M,HAWSAWI Y M.Feasibility study using TRANSYS modelling of integrating solar heated feed water to a cogeneration steam power plant[J].Case Studies in Thermal Engineering,2022,39:102396.
    [13] HU M,XIAO F,WANG L.Investigation of demand response potentials of residential air conditioners in smart grids using grey?box room thermal model[J].Applied Energy,2017,207:324?335.
    [14] THOMAS A G,JAHANGIRI P,WU D,et al.Intelligent residential air?conditioning system with smart?grid functionality[J].IEEE Transations Smart Grid 2012,3:2240?2251.
    [15] 高赐威,李倩玉,李扬.基于DLC的空调负荷双层优化调度和控制策略[J].中国电机工程学报,2014,34(10):1546?1555. GAO Ciwei,LI Qianyu,LI Yang.Bi?level optimal dispatch and control strategy for air?conditioning load based on direct load control[J].Proceedings of the CSEE,2014,34(10):1546?1555.
    [16] 包宇庆,成丽珉.空调负荷二阶等效热参数模型参数辨识方法[J].电力系统自动化,2021,45(11):37?43. BAO Yuqing,CHENG Limin.Parameter identification method of second?order equivalent thermal parameter model for air conditioning loads[J].Automation of Electric Power Systems,2021,45(11):37?43.
    [17] 陈伟,赵裕童.基于深度条件概率密度函数的居民电力负荷预测[J].电网与清洁能源,2022,38(5):36?41. CHEN Wei,ZHAO Yutong.Residential power load forecasting based on the depth conditional probability density function[J].Power System and Clean Energy,2022,38(5):36?41.
    [18] LIU Z,WANG Z,XU X.Climatic division for the design of HVAC systems[J].Journal of Cleaner Production,2021,323:129160.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

朱 明,夏宇栋,常 凯,等.基于粒子群优化算法的空调负荷灰箱模型辨识[J].电力科学与技术学报,2023,38(4):214-221.
ZHU Ming, XIA Yudong, CHANG Kai, et al. Identification of grey box model for air conditioning load based on particle swarm optimization algorithm[J]. Journal of Electric Power Science and Technology,2023,38(4):214-221.

复制
分享
文章指标
  • 点击次数:167
  • 下载次数: 601
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2023-11-06
文章二维码