基于Fisher‑SVM特征选择的负荷辨识研究
作者:
作者单位:

(1.国网江苏省电力有限公司,江苏 南京 210028;2.江苏智臻能源科技有限公司,江苏 南京 211111)

作者简介:

通讯作者:

黄 时(1994—),男,硕士,工程师,主要从事非侵入负荷辨识、低压台区等方向的算法研究;E?mail:15251892108@163.com

中图分类号:

TM933

基金项目:

国家重点研发计划“科技助力经济2020”重点专项(SQ2020YF F0426410)


Research on Fisher‑SVM feature selection based load identification
Author:
Affiliation:

(1.State Grid Jiangsu Electric Power Co., Ltd., Nanjing 210028, China;2.Jiangsu Intever Energy Technology Co., Ltd., Nanjing 211111, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对当前非侵入式负荷辨识中不同设备特征选择上主观性、盲目性的问题,提出基于Fisher?SVM特征选择的非侵入式负荷辨识算法。首先,基于高频采样终端提取入户侧电流、电压原始数据,使用傅里叶变换对原始信号分解得有功、无功及谐波时间序列;其次,将负荷波形分为4个阶段并计算得到负荷波形暂稳态特征;然后,通过Fisher?SVM算法在不同分类器中对特征进行选择,得到最优分类特征子集,并利用Sigmoid函数对结果进行概率校准;最后,根据贝叶斯理论对各分类器进行融合从而实现对不同负荷的辨识。以3类台区831户实际用户进行算法测试。结果表明,该算法能够有效利用不同电器负荷印记的独特性,克服特征选择上的盲目性,提高负荷辨识能力。

    Abstract:

    Aiming at the subjectivity and blindness of different device feature selection in current non?intrusive load identification, a non?intrusive load identification algorithm based on Fisher?SVM feature selection is proposed. Firstly, the original data of household?side current and voltage are extracted based on the high frequency sampling device. Fourier transform is used to decompose the original signal into active power, reactive power and harmonic time series. Secondly, the load waveform is divided into four stages and the transient characteristics of the load waveform are calculated. Then, by utilizing the Fisher?SVM algorithm for feature selection among different classifiers, the optimal subset of classification features is obtained. Additionally, the results are calibrated using the Sigmoid function for probability calibration. Finally, different classifiers are integrated based on Bayesian theory to achieve identification of different loads. The algorithm is tested on a dataset consisting of 831 actual users from three different distribution areas. The results show that the algorithm effectively exploits the uniqueness of different electrical load imprints, overcomes the blindness in feature selection, and increases the load identification ability.

    参考文献
    相似文献
    引证文献
引用本文

栾开宁,杨世海,黄艺璇,等.基于Fisher‑SVM特征选择的负荷辨识研究[J].电力科学与技术学报,2023,38(4):230-239,264.
LUAN Kaining, YANG Shihai, HUANG Yixuan, et al. Research on Fisher‑SVM feature selection based load identification[J]. Journal of Electric Power Science and Technology,2023,38(4):230-239,264.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-11-06
  • 出版日期:
文章二维码