基于Fisher‑SVM特征选择的负荷辨识研究
CSTR:
作者:
作者单位:

(1.国网江苏省电力有限公司,江苏 南京 210028;2.江苏智臻能源科技有限公司,江苏 南京 211111)

通讯作者:

黄 时(1994—),男,硕士,工程师,主要从事非侵入负荷辨识、低压台区等方向的算法研究;E?mail:15251892108@163.com

中图分类号:

TM933

基金项目:

国家重点研发计划“科技助力经济2020”重点专项(SQ2020YF F0426410)


Research on Fisher‑SVM feature selection based load identification
Author:
Affiliation:

(1.State Grid Jiangsu Electric Power Co., Ltd., Nanjing 210028, China;2.Jiangsu Intever Energy Technology Co., Ltd., Nanjing 211111, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • | | | |
  • 文章评论
    摘要:

    针对当前非侵入式负荷辨识中不同设备特征选择上主观性、盲目性的问题,提出基于Fisher?SVM特征选择的非侵入式负荷辨识算法。首先,基于高频采样终端提取入户侧电流、电压原始数据,使用傅里叶变换对原始信号分解得有功、无功及谐波时间序列;其次,将负荷波形分为4个阶段并计算得到负荷波形暂稳态特征;然后,通过Fisher?SVM算法在不同分类器中对特征进行选择,得到最优分类特征子集,并利用Sigmoid函数对结果进行概率校准;最后,根据贝叶斯理论对各分类器进行融合从而实现对不同负荷的辨识。以3类台区831户实际用户进行算法测试。结果表明,该算法能够有效利用不同电器负荷印记的独特性,克服特征选择上的盲目性,提高负荷辨识能力。

    Abstract:

    Aiming at the subjectivity and blindness of different device feature selection in current non?intrusive load identification, a non?intrusive load identification algorithm based on Fisher?SVM feature selection is proposed. Firstly, the original data of household?side current and voltage are extracted based on the high frequency sampling device. Fourier transform is used to decompose the original signal into active power, reactive power and harmonic time series. Secondly, the load waveform is divided into four stages and the transient characteristics of the load waveform are calculated. Then, by utilizing the Fisher?SVM algorithm for feature selection among different classifiers, the optimal subset of classification features is obtained. Additionally, the results are calibrated using the Sigmoid function for probability calibration. Finally, different classifiers are integrated based on Bayesian theory to achieve identification of different loads. The algorithm is tested on a dataset consisting of 831 actual users from three different distribution areas. The results show that the algorithm effectively exploits the uniqueness of different electrical load imprints, overcomes the blindness in feature selection, and increases the load identification ability.

    参考文献
    [1] 刘凯诚,钟鸣,曾平良,等.考虑分布式可再生电源和储能的智能配电网可靠性评估综述[J].电测与仪表,2021,58(7):1?11. LIU Kaicheng,ZHONG Ming,ZENG Pingliang,et al.Review on reliability assessment of smart distribution networks considering distributed renewable energy and energy storage[J].Electrical Measurement & Instrumentation,2021,58(7):1?11.
    [2] 李振华,陶渊,赵爽,等.智能配电网状态估计方法研究现状分析[J].电力科学与技术学报,2019,34(1):115?122. LI Zhenhua,TAO Yuan,ZHAO Shuang,et al.Research situation analysis of state estimation in smart distribution networks[J].Journal of Electric Power Science and Technology,2019,34(1):115?122.
    [3] 武昕,严萌,郭一凡,等.基于结构化特征图谱的组合支持向量机非侵入式负荷辨识[J].电力系统自动化,2022,46(12):210?219. WU Xin,YAN Meng,GUO Yifan,et al.Non?intrusive load identification by combined support vector machine based on structured characteristic spectrum[J].Automation of Electric Power Systems,2022,46(12):210?219.
    [4] 李如意,张鹏,刘永光,等.基于随机森林的非侵入式家庭负荷辨识方法[J].电测与仪表,2021,58(4):9?16. LI Ruyi,ZHANG Peng,LIU Yongguang,et al.Non?intrusive household load identification method based on random forest[J].Electrical Measurement & Instrumentation,2021,58(4):9?16.
    [5] 雷怡琴,孙兆龙,叶志浩,等.电力系统负荷非侵入式监测方法研究[J].电工技术学报,2021,36(11):2288?2297. LEI Yiqin,SUN Zhaolong,YE Zhihao,et al. Research on non?intrusive monitoring method of power system load[J]. Transactions of China Electrotechnical Society,2021,36(11):2288?2297.
    [6] 祁兵,董超,武昕,等.基于DTW算法与稳态电流波形的非侵入式负荷辨识方法[J].电力系统自动化,2018,42(3):70?76. QI Bing,DONG Chao.WU Ting,et al.Non?intrusive load identification method based on DTW algorithm and steady?state current waveform[J].Automation of Electric Power Systems,2018,42(3):70?76.
    [7] 许春蕾,刘文颖,郭虎,等.基于小波特征提取的可调节负荷辨识方法[J].可再生能源,2019,37(6):845?851. XU Chunlei,LIU Wenying,GUO Hu,et al.Adjustable load identification method based on wavelet feature extraction[J].Renewable Energy Resources,2019,37(6):845?851.
    [8] 刘恒勇,刘永礼,邓世聪,等.一种基于LSTM模型的电力负荷辨识方法[J].电测与仪表,2019,56(23):62?69. LIU Hengyong,LIU Yongli,DENG Shicong,et al.A power load identification method based on LSTM model[J].Electrical Measurement & Instrumentation,2019,56(23):62?69.
    [9] 孙毅,崔灿,张璐,等.智能用电非侵入式负荷监测系统研究[J].电力科学与技术学报,2019,34(2):155?160. SUN Yi,CUI Can,ZHANG Lu,et al.Research on nonintrusive load monitoring system for global energy internet[J].Journal of Electric Power Science and Technology,2019,34(2):155?160.
    [10] 武昕,焦点,高宇辰.基于非侵入式用电数据分解的自适应特征库构建与负荷辨识[J].电力系统自动化,2020,44(4):101?109. WU Ting,JIAO Dian,GAO Yuchen.Construction of adaptive feature library and load identification based on decomposition of non?intrusive power consumption data[J].Automation of Electric Power Systems,2020,44(4):101?109.
    [11] 裘星,尹红,张之涵,等.基于V?I轨迹与高次谐波特征的非侵入式负荷识别方法[J].电力工程技术,2021,40(6):34?42. QIU Xing,YIN Hong,ZHANG Zhihan,et al.Non?intrusive load identification method based on V?I trajectory and high?order harmonic feature[J].Electric Power Engineering Technology,2021,40(6):34?42.
    [12] 吴静,赵伟.一种用于分析电网谐波的多谱线插值算法[J].中国电机工程学报,2006,26(8):55?60. WU Jing,ZHAO Wei.An algorithm of MICA for analyzing harmonics in power system[J].Proceedings of the CSEE,2006,26(8):55?60.
    [13] 余登武,刘敏,汪元芹.基于GRNN与注意力机制模型的非侵入式家用负荷分解[J].智慧电力,2021,49(3):74?79. YU Dengwu,LIU Min,WANG Yuanqin.Non?invasive household load decomposition based on GRNN and attention mechanism model[J].Smart Power,2021,49(3):74?79.
    [14] 祁兵,韩璐.基于负荷空间划分的非侵入式辨识算法[J].电测与仪表,2018,55(16):19?25. QI Bing,HAN Lu.A non?intrusive identification algorithm based on partition of the load space[J].Electrical Measurement & Instrumentation,2018,55(16):19?25.
    [15] 杨秀,李安,孙改平,等.基于改进GMM?CNN?GRU混合的非侵入式负荷监测方法研究[J].电力系统保护与控制,2022,50(14):65?75. YANG Xiu,LI An,SUN Gaiping,et al.Non?invasive load monitoring based on an improved GMM?CNN?GRU combination[J].Power System Protection and Control,2022,50(14):65?75.
    [16] 苏欣,袁葆,张瑞,等.基于非侵入式负荷识别的交流电压幅值测量[J].电网与清洁能源,2022,38(12):101?106. SU Xin,YUAN Bao,ZHANG Rui,et al.AC voltage amplitude measurement based on non?intrusive load identification[J].Power System and Clean Energy,2022,38(12):101?106.
    [17] SRINIVASAN D,NG W S,LIEW A C.Neural? network?based signature recognition for harmonic source identification[J].IEEE Transactions on Power Delivery,2006,21(1):398?405.
    [18] 谢小英,牛益国,于惠慧,等.基于相空间重构与原子分解的复杂电压暂降特征参数辨识[J].电力科学与技术学报,2020,35(5):103?110. XIE Xiaoying,NIU Yiguo,YU Huihui,et al.Voltage sag characteristic parameter identification method based on phase space reconstruction and atomic decomposition[J].Journal of Electric Power Science and Technology,2020,35(5):103?110.
    [19] TAPIA E,BULACIO P,ANGELONE L.Sparse and stable gene selection with consensus SVM?RFE[J].Pattern Recognition Letters,2012,33(2):164?172.
    [20] CHENG K,ZHANG C,YU H,et al.Grouped SMOTE with noise filtering mechanism for classifying imbalanced data[J].IEEE Access,2019,7:170668?170681.
    [21] 何小飞,童晓阳,孙明蔚.基于贝叶斯网络和D?S证据理论的分布式电网故障诊断[J].电力系统自动化,2011,35(10):42?47. HE Xiaofei,TONG Xiaoyang,SUN Mingwei.Distributed power system fault diagnosis based on bayesian network and dempster?shafer evidence theory[J].Automation of Electric Power System,2011,35(10):42?47.
    [22] 杨东升,孔亮,胡博,等.基于多特征序列融合的负荷辨识方法[J].电力系统自动化,2017,41(22):66?73. YANG Dongsheng,KONG Liang,HU Bo,et al.Load identification method based on multi?feature sequence fusion[J].Automation of Electric Power System,2017,41(22):66?73.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

栾开宁,杨世海,黄艺璇,等.基于Fisher‑SVM特征选择的负荷辨识研究[J].电力科学与技术学报,2023,38(4):230-239,264.
LUAN Kaining, YANG Shihai, HUANG Yixuan, et al. Research on Fisher‑SVM feature selection based load identification[J]. Journal of Electric Power Science and Technology,2023,38(4):230-239,264.

复制
分享
文章指标
  • 点击次数:136
  • 下载次数: 564
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2023-11-06
文章二维码