基于RF特征优选的AEA‑ResNet柱上断路器运行状态诊断
作者:
作者单位:

(1.国网浙江义乌市供电有限公司,浙江 义乌 322000;2.上海电力大学电气工程学院,上海 200090)

作者简介:

通讯作者:

杨欢红(1965—),女,硕士,副教授,主要从事电力系统安全运行、微电网及综合能源系统方面的工作;E?mail:

中图分类号:

TM561

基金项目:

国家自然科学基金(51777119)


Operation status diagnosis of pole‑mounted breakers based on RF feature optimization and AEA‑ResNet
Author:
Affiliation:

(1.State Grid Zhejiang Yiwu Power Supply Company, Yiwu 322000, China; 2.College of Electric Power Engineering,Shanghai University of Electric Power, Shanghai 200090, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为实现柱上断路器运行状态的智能高效诊断,提出一种基于随机森林(random forest, RF)的特征优选算法,并利用遗传模拟退火算法(annealing evolution algorithm,AEA)优化残差神经网络(residual neural network,ResNet),实现设备状态的智能预测。首先构建包含22维特征的断路器运行状态数据库,通过RF算法计算各特征的重要度指标,并通过序列反向搜索的方式保留11维特征作为后续模型的输入。然后,利用AEA算法对ResNet的网络结构进行迭代优化,识别最优参数用于模型预测。最后,仿真结果表明,RF算法可有效避免特征冗余,提高模型的预测性能。与传统预测模型相比,AEA?ResNet模型可以显著提升预测准确率,尤其在少数类样本的召回率和精度方面优势明显。

    Abstract:

    To evaluate the operation status of pole?mounted breakers in an intelligent and efficient manner, the random forest (RF) is em?ployed for feature optimization, and the annealing evolution algorithm (AEA) is applied to optimize the parameters of the re?sidual neural network (ResNet). Firstly, a database is constructed, encompassing 22?dimensional operational features of pole?mounted breakers, with their importance indices calculated using the RF. Through the reverse sequence search method, 11 features are determined as inputs. Subsequently, the AEA is employed to optimize the network parameters of ResNet. Sim?ulation results indicate that the RF effectively eliminates feature redundancy and improves the prediction performance of the model. In comparison to traditional prediction models, the proposed AEA?ResNet method significantly improves the accuracy, especially in the recall and precision of minority samples.

    参考文献
    相似文献
    引证文献
引用本文

钟 伟,杨欢红,赵恒亮,等.基于RF特征优选的AEA‑ResNet柱上断路器运行状态诊断[J].电力科学与技术学报,2023,38(5):150-158.
ZHONG Wei, YANG Huanhong, ZHAO Hengliang, et al. Operation status diagnosis of pole‑mounted breakers based on RF feature optimization and AEA‑ResNet[J]. Journal of Electric Power Science and Technology,2023,38(5):150-158.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-15
  • 出版日期:
文章二维码