联合改进SVR和渐消记忆递推最小二乘算法的电能表误差评估模型研究
CSTR:
作者:
作者单位:

(1.国网河北省电力有限公司营销服务中心,河北 石家庄 050000;2.国网河北省电力有限公司,河北 石家庄 050000;3.石家庄铁道大学电气与电子工程学院,河北 石家庄 050000)

通讯作者:

李 翀(1982—),男,硕士,高级工程师,主要从事电力营销资产管理与营销大数据分析方面的工作;E?mail:chunglee3181@126.com

中图分类号:

TM933

基金项目:

国家自然科学基金(11872253);国网河北省电力公司科技项目(kj2021?056)


Research on error evaluation model of electricity meter combining improved SVR and fading memory recursive least squares algorithm
Author:
Affiliation:

(1. State Grid Hebei Electric Power Company Marketing Service Center, Shijiazhuang 050000,China; 2. State Grid Hebei Electric Power Company, Shijiazhuang 050000, China;3.School of Electrical and Electronic Engineering, Shijiazhuang Tiedao University,Shijiazhuang 050000,China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • | | | |
  • 文章评论
    摘要:

    针对电能计量装置运行误差现场检定难度大、定期轮换成本高等问题,提出一种联合麻雀搜索算法(SSA)、支持向量回归机(SVR)和渐消记忆递推最小二乘算法(FMRLS)的电能表误差评估模型。该方法首先利用改进的K?Means算法对台区进行分类,将分类后的样本导入利用SSA优化后的SVR模型进行训练,建立台区线损率预测模型;而后将得到的线损率代入改进的线损模型,构建电能表误差求解方程,利用FMRLS算法对误差方程进行求解,对电能表误差进行估计。通过河北省某低压台区样本的数据验证,该方法可以实现对低压台区线损率的有效预测,并估计出在运电能表的误差,为加快推进智能电能表检修策略由定期更换转向状态轮换提供技术保障。

    Abstract:

    Aiming at the problems of on?site verification difficulties and high periodic replacement costs of electricity metering devices, a combined electric meter error assessment model is proposed, which integrates the sparrow search algorithm (SSA), support vector regression (SVR), and fading memory recursive least squares algorithm (FMRLS). Firstly, this method utilizes an improved K?Means algorithm to classify platform areas, and imports the classified samples into an SVR model optimized by the SSA for training to build a platform area line loss rate prediction model. Then, the obtained line loss rate is taken into the improved line loss model to construct an equation for solving electricity meter errors. The FMRLS algorithm is subsequently used to solve the error equation and estimate electricity meter errors. By validating the data from a sample of low?voltage platform areas in Hebei Province, this method can effectively predict the line loss rate in low?voltage platform areas and estimate the errors in electricity meters during operation. This provides technical support for accelerating the transition of the smart electricity meter maintenance strategy from regular replacement to state rotation.

    参考文献
    [1] 郑玉平,吕鹏飞,李斌,等.新型电力系统继电保护面临的问题与解决思路[J].电力系统自动化,2023,47(22):3?15. ZHENG Yuping,Lü Pengfei,LI Bin,et al.Problems faced by relay protection in new power system and their solution ldeas[J].Automation of Electric Power Systems,2023,47(22):3?15.
    [2] 赵东元,胡楠,傅靖,等.提升新能源电力系统灵活性的中国实践及发展路径研究[J].电力系统保护与控制,2020,48(24):1?8. ZHAO Dongyuan,HU Nan,FU Jing,et al.Research on the practice and road map of enhancing the flexibility of a new generation power system in China[J].Power System Protection and Control,2020,48(24):1?8.
    [3] 于三义.浅谈新能源发电技术[J].中国电力教育,2011(15):92?93. YU Sanyi.Discussion on new energy generation technology[J].China Electric Power Education,2011(15):92?93.
    [4] 于海波,林繁涛,白静芬,等.新能源发电并网中电能计量问题的研究[J].电测与仪表,2012,49(11):57?60. YU Haibo,LIN Fantao,BAI Jingfen,et al.Studies on the power metering problem for grid?connected new energy[J].Electrical Measurement & Instrumentation,2012,49(11):57?60.
    [5] 杨晶,郭毅.智能电表的技术分析及在电网信息采集中应用[J].山东工业技术,2018(16):126. YANG Jing,GUO Yi.Technical analysis of smart meter and its application in power grid information collection[J].Shandong Industrial Technology,2018(16):126.
    [6] 许司迁.对智能电表与抄核收信息系统的一体化应用的研究[J].科技视界,2018(34):38?40. XU Siqian.Research on the integrated application of intelligent electricity meter and the information system of reading,checking and receiving[J].Science & Technology Vision,2018(34):38?40.
    [7] 罗凤章,张天宇,王成山,等.基于多状态马尔科夫链的配电设备状态检修策略优化方法研究[J].中国电机工程学报,2020,40(9):2777?2786. LUO Fengzhang,ZHANG Tianyu,WANG Chengshan,et al.Research on optimization method of condition based maintenance strategy for distribution system equipment based on the multistate Markov chain[J].Proceedings of the CSEE,2020,40(9):2777?2786.
    [8] 王云静,邢奥岚,曲正伟,等.基于AMI全量测点分区的配电网动态状态估计方法[J].电力自动化设备,2023,43(7):142?150. WANG Yunjing,XING Aolan,QU Zhengwei,et al.Dynamic state estimation method of distribution network based on partition of AMI total measurement points[J].Electric Power Automation Equipment,2023,43(7):142?150.
    [9] 林佳颖,栾文鹏,余贻鑫,等.AMI量测用于配电网在线状态估计的可信度建模及分析[J].电网技术,2018,42(4):1191?1199. LIN Jiaying,LUAN Wenpeng,YU Yixin,et al.Credibility modelling and analysis of AMI measurements for on?line distribution state estimation[J].Power System Technology,2018,42(4):1191?1199.
    [10] 李坤,周来,张勇军,等.基于量测数据质量的低压台区拓扑识别结果可信度评价[J].电力系统自动化,2021,45(17):99?107. LI Kun,ZHOU Lai,ZHANG Yongjun,et al. Credibility evaluation of topology identification results of low?voltage station area based on measurement data quality[J].Automation of Electric Power Systems,2021,45(17):99?107.
    [11] 郭景涛,张韧,金志刚.智能电表集群的自主式误差算法[J].计量学报,2011,32(5):385?391. GUO Jingtao,ZHANG Ren,JIN Zhigang.Autonomous algorithm for relative error of smart electric energy meter cluster[J].Acta Metrologica Sinica,2011,32(5):385?391.
    [12] BANDIM C J,ALVES J J,PINTO JR A V,et al.Identification of energy theft and tampered meters using a central observer meter:a mathematical approach[C]//2003 IEEE PES Transmission and Distribution Conference and Exposition,Dallas,USA,2003.
    [13] SEPPA H.Method and system for the calibration of meters[P].WO 2007/ 063180,2007.
    [14] KORHONEN A.Verification of energy meters using automatic meter reading data[D].Espoo:Aalto University,2012.
    [15] 郭景涛.面向智能电网AMI的网络计量关键技术与用户用电数据挖掘研究[D].天津:天津大学,2011. GUO Jingtao.Research on key technology of network measurement and user power consumption data mining for smart grid[D].Tianjin:Tianjin University,2011.
    [16] 陈文礼,程瑛颖,舒永生,等.基于改进支持向量机的智能电能表故障多分类方法[J/OL].电测与仪表.https:// kns.cnki.net/kcms/detail/23.1202.TH.20211130.1259. 002.html. CHEN Wenli,CHENG Yingying,SHU Yongsheng,et al.Multi?classification method of smart meter fault based on improved support vector machine[J/OL].Electrical Measurement & Instrumentation,https:// kns.cnki.net/ kcms/detail/23.1202.TH.20211130.1259.002.html.
    [17] 刘文宇,刘璐,刘馨然,等.基于改进BP神经网络的低压配电台区智能电能表误差状态评估模型[J/OL].电测与仪表.https:// kns.cnki.net/ kcms/ detail/ 23.1202.TH.20220622.1704.010.html. LIU Wenyu,LIU Lu,LIU Xinran,et al.Estimation method of operation error of intelligent meter based on particle swarm optimization BP neural network.[J/OL].Electrical Measurement & Instrumentation,https:// kns.cnki.net/ kcms/ detail/ 23.1202.TH.20220622.1704.010.Html.
    [18] 孔祥玉,马玉莹,李野,等.基于限定记忆递推最小二乘算法的智能电表运行误差远程估计[J].中国电机工程学报,2020,40(7):2143?2151+2394. KONG Xiangyu,MA Yuying,LI Ye,et al.Remote estimation of smart meter operation error based on limited memory recursive least square algorithm[J].Proceedings of the CSEE,2020,40(7):2143?2151+2394.
    [19] 吴昊天,赵阳,刘子卓,等.基于小波变换的配电变压器差动保护相位补偿方法[J].电力系统保护与控制,2022,50(10):76?83. WU Haotian,ZHAO Yang,LIU Zizhuo et al. Phase compensation method for differential protection of distribution transformer based on wavelet transform[J].Power System Protection and Control,2022,50(10):76?83.
    [20] 张晓英,史冬雪,张琎,等.基于CPSO?BP神经网络的风电并网暂态电压稳定评估[J].智慧电力,2021,49(10):38?44. ZHANG Xiaoying,SHI Dongxue,ZHANG Jin,et al.Transient voltage stability assessment of power system integrated with wind power based on CPSO?BP neural network[J].Smart Power,2021,49(10):38?44.
    [21] 文福栓,韩祯祥.基于分群算法和人工神经元网络的配电网线损计算[J].中国电机工程学报,1993,13(3):41?50. WEN Fushuan,HAN Zhenxiang.The calculation of energy losses in distribution systems based upon a clustering algorithm and an artificial neutral network model[J].Proceeding of the CSEE,1993,13(3):41?50.
    [22] 李云鹏,金旭荣,张鑫瑞.基于并行计算的电能计量装置故障诊断技术研究[J].电测与仪表,2022,59(12):96?102. LI Yunpeng,JIN Xurong,ZHANG Xinrui.Research on fault diagnosis technology of electric energy metering device based on parallel computing[J].Electrical Measurement & Instrumentation,2022,59(12):96?102.
    [23] 赵洋,王瀚墨,康丽,等.基于时间卷积网络的短期电力负荷预测[J].电工技术学报,2022,37(5):1242?1251. ZHAO Yang,WANG Hanmo,KANG Li,et al. Temporal convolution network?based short?term electrical load forecasting[J].Transactions of China Electrotechnical Society,2022,37(5):1242?1251.
    [24] 裘华东,王伟峰,陈昊,等.基于AMI数据的计量点异常远程诊断模型研究[J].电网技术,2018,42(S1):1?6. QIU Huadong,WANG Weifeng,CHEN Hao,et al.Study on remote diagnosis model of anomaly about measurement point based on AMI data[J].Power System Technology,2018,42(S1):1?6.
    [25] 雷明阳,陈静杰,欧晓勇,等. 基于张量分解的智能电表电压数据缺失填补算法[J]. 电网与清洁能源,2021,37(12):8?15. LEI Mingyang,CHEN Jingjie,OU Xiaoyong,et al. A missing voltage data imputation algorithm for smart meters based on tensor decomposition[J].Power System and Clean Energy,2021,37(12):8?15.
    [26] 谢文超,赵延明,方紫微,等.带可变遗忘因子递推最小二乘法的超级电容模组等效模型参数辨识方法[J].电工技术学报,2021,36(5):996?1005. XIE Wenchao,ZHAO Yanming,FANG Ziwei,et al.Variable forgetting factor recursive least squales based parameter ldentification method for the equivalent circuit model of the supercapacitor cell module[J].Transactions of China Electrotechnical Society,2021,36(5):996?1005.
    [27] 马勇,肖焓艳,丁然,等.基于紫外吸收光谱与最小二乘法的SO2、H2S与CS2混合气体定量检测[J]. 高压电器,2021,57(3):157?165. MA Yong,XIAO Hanyan,DING Ran,et al.Quantitative detection of SO2,H2S and CS2 gas mixture based on UV absorption spectrometry and least squares algorithm[J]. High Voltage Apparatus,2021,57(3):157?165.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王 浩,杨 鹏,李 翀,等.联合改进SVR和渐消记忆递推最小二乘算法的电能表误差评估模型研究[J].电力科学与技术学报,2023,38(5):206-215.
WANG Hao, YANG Peng, LI Chong, et al. Research on error evaluation model of electricity meter combining improved SVR and fading memory recursive least squares algorithm[J]. Journal of Electric Power Science and Technology,2023,38(5):206-215.

复制
分享
文章指标
  • 点击次数:95
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2024-01-15
文章二维码