基于改进VMD去噪和优化ELM方法的变压器早期故障诊断
作者:
作者单位:

(上海电力大学电气工程学院,上海 200090)

作者简介:

通讯作者:

刘梦琪(1998—),女,硕士研究生,主要从事电力系统继电保护与控制的研究;E?mail:1357169497@qq.com

中图分类号:

TM41

基金项目:

国家自然科学基金(61873159)


Transformer early fault diagnosis based on improved VMD denoising and optimized ELM method
Author:
Affiliation:

(College of Electrical Engineering, Shanghai University of Electric Power, Shanghai 200090, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    变压器内部漏磁场是判断变压器绕组早期故障的重要依据。实际运行中噪声会对漏磁场检测产生干扰从而影响对故障状态的判断。为此,首先使用遗传算法以样本熵作为适应度函数来优化变分模态分解(VMD)参数,然后将VMD分解后的相关模态使用小波阈值法去除残余噪声;其次,选择并提取降噪漏磁场信号的特征向量,将特征向量输入到改进极限学习机(ELM)中进行训练和分类,实现变压器绕组的早期故障诊断。仿真及动模实验表明:该方法去噪效果良好,能有效地还原原漏磁场信号,最终能实现变压器绕组早期故障的准确识别。

    Abstract:

    The internal leakage magnetic field of transformer is an important criterion for determining the early fault of transformer winding. In actual operation, noise can interfere with the detection of the leakage magnetic field, thereby affecting the judgment of the fault status. Therefore, firstly, genetic algorithms are used with sample entropy as the fitness function to optimize the parameters of variational mode decomposition (VMD). Subsequently, the relevant modes obtained from VMD are processed using wavelet thresholding to eliminate residual noise. Next, feature vectors are selected and extracted from the denoised leakage magnetic field signals. These feature vectors are then input into an improved extreme learning machine (ELM) for training and classification, achieving early fault diagnosis of transformer windings. The results of simulation and dynamic experiment show that this method exhibits a good denoising performance, effectively restoring the original leakage magnetic field signal. Ultimately, it enables accurate identification of early faults in transformer windings.

    参考文献
    相似文献
    引证文献
引用本文

刘建锋,刘梦琪,董倩雯,等.基于改进VMD去噪和优化ELM方法的变压器早期故障诊断[J].电力科学与技术学报,2023,38(6):55-66.
LIU Jianfeng, LIU Mengqi, DONG Qianwen, et al. Transformer early fault diagnosis based on improved VMD denoising and optimized ELM method[J]. Journal of Electric Power Science and Technology,2023,38(6):55-66.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-30
  • 出版日期:
文章二维码