基于改进VMD去噪和优化ELM方法的变压器早期故障诊断
CSTR:
作者:
作者单位:

(上海电力大学电气工程学院,上海 200090)

通讯作者:

刘梦琪(1998—),女,硕士研究生,主要从事电力系统继电保护与控制的研究;E?mail:1357169497@qq.com

中图分类号:

TM41

基金项目:

国家自然科学基金(61873159)


Transformer early fault diagnosis based on improved VMD denoising and optimized ELM method
Author:
Affiliation:

(College of Electrical Engineering, Shanghai University of Electric Power, Shanghai 200090, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • | | | |
  • 文章评论
    摘要:

    变压器内部漏磁场是判断变压器绕组早期故障的重要依据。实际运行中噪声会对漏磁场检测产生干扰从而影响对故障状态的判断。为此,首先使用遗传算法以样本熵作为适应度函数来优化变分模态分解(VMD)参数,然后将VMD分解后的相关模态使用小波阈值法去除残余噪声;其次,选择并提取降噪漏磁场信号的特征向量,将特征向量输入到改进极限学习机(ELM)中进行训练和分类,实现变压器绕组的早期故障诊断。仿真及动模实验表明:该方法去噪效果良好,能有效地还原原漏磁场信号,最终能实现变压器绕组早期故障的准确识别。

    Abstract:

    The internal leakage magnetic field of transformer is an important criterion for determining the early fault of transformer winding. In actual operation, noise can interfere with the detection of the leakage magnetic field, thereby affecting the judgment of the fault status. Therefore, firstly, genetic algorithms are used with sample entropy as the fitness function to optimize the parameters of variational mode decomposition (VMD). Subsequently, the relevant modes obtained from VMD are processed using wavelet thresholding to eliminate residual noise. Next, feature vectors are selected and extracted from the denoised leakage magnetic field signals. These feature vectors are then input into an improved extreme learning machine (ELM) for training and classification, achieving early fault diagnosis of transformer windings. The results of simulation and dynamic experiment show that this method exhibits a good denoising performance, effectively restoring the original leakage magnetic field signal. Ultimately, it enables accurate identification of early faults in transformer windings.

    参考文献
    [1] 卢仰泽,鲁非,苏翔,等.油浸式变压器内外辐射传热的数值分析[J].高压电器,2022,58(11):47-52+74. LU Yangze,LU Fei,SU Xiang,et al.Numerical analysis of internal and external radiation heat transfer in oil? immersed transformer[J].High Voltage Apparatus,2022,58(11):47?52+74.
    [2] BEHIJAT V,VAHEDI A,SETAYESHMEHR A,et al.Diagnosing shorted turns on the windings of power transformers based upon online FRA using capacitive and inductive couplings[J].IEEE Transactions on Power Delivery,2011,26(4):2123?2133.
    [3] 甘团杰,郑建涵,张艳,等.基于领域自适应的变压器状态识别[J].智慧电力,2022,50(2):82?88. GAN Tuanjie,ZHENG Jianhan,ZHANG Yan,et al.Transformer condition identification based on domain adaptation[J].Smart Power,2022,50(2):82?88.
    [4] 任于展,武仕朴,汪友华,等.基于暂态电流差极值的电力变压器剩磁测量方法[J].电工技术学报,2022,37(5):1088?1097. REN Yuzhan,WU Shipu,WANG Youhua,et al.Residual flux measurement method of power transformer based on extreme value of transient current difference[J].Transactions of China Electrotechnical Society,2022,37(5):1088?1097.
    [5] 郝治国,张保会,李朋,等.漏电感参数辨识技术在线监测变压器绕组变形[J].高电压技术,2006,32(11):67?70. HAO Zhiguo,ZHANG Baohui,LI Peng,et al.Online monitoring of transformer winding deformation by leakage inductance parameter identification[J].High Voltage Engineering,2006,32(11):67?70.
    [6] 赵斌,张闯,李隆,等.电力变压器振动检测装置设计及振动信号去噪方法研究[J].电测与仪表,2021,58(8):118?124. ZHAO Bin,ZHANG Chuang,LI Long,et al.Research on the design of power transformer vibration detection device and the vibration signal de?noising method[J].Electrical Measurement & Instrumentation,2021,58(8):118?124.
    [7] 熊尉辰,宋国兵,李洋,等.利用智能电表量测数据的三相四线制配电线组路参数辨识[J].电力系统自动化,2022,46(20):155?166. XIONG Weichen,SONG Guobing,LI Yang,et al.Parameter identification of three?phase four?wire distribution line using smart meter measurement data[J].Automation of Electric Power Systems,2022,46(20):155?166.
    [8] 张育杰,冯健,李典阳,等.基于油色谱数据的变压器故障征兆新优选策略[J].电网技术,2021,45(8):3324? 3331. ZHANG Yujie,FENG Jian,LI Dianyang,et al.New feature selection method for transformer fault diagnosis based on DGA data[J].Power System Technology,2021,45(8):3324?3331.
    [9] 周院超,王雪.基于磁场测量的变压器绕组形变在线监测方法[J].电测与仪表,2017,54(17):58?63+87. ZHOU Yuanchao,WANG Xue.The on?line monitoring method of transformer winding deformation based on magnetic field measurement[J].Electrical Measurement & Instrumentation,2017,54(17):58?63+87.
    [10] 邓祥力,吴文强,杨梅,等.基于漏磁场和深度信念网络的变压器绕组变形诊断研究[J].变压器,2021,58(8):42?48. DENG Xiangli,WU Wenqiang,YANG Mei,et al.Research on transformer winding deformation diagnosis based on leakage magnetic field and deep belief network[J].Transformer,2021,58(8):42?48.
    [11] 潘超,石文鑫,孟涛.单相变压器匝间短路电磁特性研究[J].高电压技术,2020,46(5):1839?1856. PAN Chao,SHI Wenxin,MENG Tao.Study on electromagnetic characteristics of interturn short circuit of single?phase transformer[J].High Voltage Engineering,2020,46(5):1839?1852.
    [12] 李晨,李强,孙昭昌,等.变压器绕组变形的影响因素及出口短路后分析[J].变压器,2013,50(8):66?70. LI Chen,LI Qiang,SUN Zhaochang,et a1.Influence factors of transformer winding deformation and analysis after output short circuit[J].Transformer,2013,50(8):66?70.
    [13] 高宁,高文胜,李福祺,等.变压器局放在线监测中的现场干扰分析[J].变压器,2002,39(1):24?26. GAO Ning,GAO Wensheng,LI Fuqi,et a1.Analysis of on?site noise in partial discharge monitoring of power transformer[J].Transformer,2002,39(1):24?26.
    [14] 周建,向北平,倪磊,等.基于Shannon熵的自适应小波包阈值函数去噪算法研究[J].振动与冲击,2018,37(16):206?211. ZHOU Jian,XIANG Beiping,NI Lei,et al.Research on adaptive wavelet packet threshold function denoising algorithm based on Shannon entropy[J].Journal of Vibration and Shock,2018,37(16):206?211.
    [15] 刘震宇,刘振英,范贺明.基于EMD?ICA的高压电缆局部放电信号去噪研究[J].电力系统保护与控制,2018,46(24):83?87. LIU Zhenyu,LIU Zhenying,FAN Heming.Research on partial discharge signal denoising of high voltage cable based on EMD?ICA[J].Power System Protection and Control,2018,46(24):83?87.
    [16] 蒋沅,上官彪,曾竞凯.基于EEMD的改进小波阈值算法在超声水表中的应用[J].振动与冲击,2022,41(5):208?213. JIANG Yuan,SHANGGUAN Biao,ZENG Jingkai.Application of improved wavelet threshold algorithm based on EEMD in ultrasonic water meter[J].Journal of Vibration and Shock,2022,41(5):208?213.
    [17] 崔江,唐军祥,张卓然,等.基于极限学习机的航空发电机旋转整流器快速故障分类方法研究[J].中国电机工程学报,2018,38(8):2458?2466. CUI Jiang,TANG Junxiang,ZHANG Zhuoran,et al.Fast fault classification method research of aircraft generator rotating rectifier based on extreme learning machine[J].Proceedings of the CSEE,2018,38(8):2458?2466.
    [18] 赵文清,严海,周震东,等.基于残差 BP 神经网络的变压器故障诊断[J]电力自动化设备,2020,40(2):143?148. ZHAO Wenqing,YAN Hai,ZHOU Zhendong,et al.Fault diagnosis of transformer based on residual BP neural network[J].Electric Power Automation Equipment,2020,40(2):143?148.
    [19] DRAGOMIRETSKIY K,ZOSSO D.Variational mode decomposition[J].IEEE Transactions on Signal Processing,2014,62(3):531?544.
    [20] KAZEMI A,MOHAMED A,SHAREEF H,et al.Optimal power quality monitor placement using genetic algorithm and Mallow's Cp[J].International Journal of Electrical Power & Energy Systems,2013,53(1):564?575.
    [21] 刘云鹏,律方成,李成榕,等.基于数学形态滤波器抑制局部放电窄带周期性干扰的研究[J].中国电机工程学报,2004,24(3):169?173. LIU Yunpeng,Lü Fangcheng,LI Chengrong,et a1.Study of the mathematical morphological filter in suppressing periodic narrow bandwidth noise of PD[J].Proceedings of the CSEE,2004,24(3):169?173.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘建锋,刘梦琪,董倩雯,等.基于改进VMD去噪和优化ELM方法的变压器早期故障诊断[J].电力科学与技术学报,2023,38(6):55-66.
LIU Jianfeng, LIU Mengqi, DONG Qianwen, et al. Transformer early fault diagnosis based on improved VMD denoising and optimized ELM method[J]. Journal of Electric Power Science and Technology,2023,38(6):55-66.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2024-01-30
文章二维码