基于快速傅里叶变换和改进T‑S模糊神经网络集成模型的逆变器开路故障诊断方法研究
作者:
作者单位:

(1.黄河交通学院智能工程学院,河南 焦作 454950;2. 河南送变电建设有限公司,河南 郑州 450000;3.河南理工大学电气工程与自动化学院,河南 焦作454000)

作者简介:

通讯作者:

田广强(1975—),男,硕士,副教授,主要从事人工智能应用技术研究;E?mail:tectian@zjtu.edu.cn.

中图分类号:

TM464

基金项目:

国家自然科学基金(U1804143);河南省科技攻关(212102210146)


Research on open‑circuit fault diagnosis method for inverter transistor based on FFT and improved T‑S FNN ensemble model
Author:
Affiliation:

(1.School of Intelligent Engineering, Huanghe Jiaotong University, Jiaozuo 454950,China; 2. Henan Power Transmission and Transformation Construction Co.,Ltd.,Zhengzhou 450000,China;3. School of Electrical Engineering and Automation, Henan Polytechnic University, Jiaozuo 454000,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对受负载扰动和测量噪声影响,逆变器开路时的故障边界间、故障与特征间存在交叠和模糊性问题,在对逆变器功率管开路故障特征的分析基础上,提出基于快速傅里叶变换和改进T?S(Takagi?Sugeno)模糊神经网络集成模型的逆变器开路故障诊断模型。首先,依据快速傅里叶变换分析逆变器的三相输出电流波形,提取功率管发生不同类型开路故障时的故障特征;其次,采用规则自分裂技术和模糊C均值设计T?S模糊神经网络的前件网络的隶属函数层;然后,依托自适应Levenberg?Marquardt算法对T?S网络参数进行训练;最后,利用训练后的T?S网络实现逆变器功率管的多种故障类型与位置的诊断。实验结果表明,所提出模型的诊断准确率高达96%,能够显著改善逆变器功率管开路故障诊断时所存在的问题。

    Abstract:

    Aiming at overlap and fuzziness between fault boundaries, faults, and characteristics under load disturbances and measurement noise influence when the inverter is in an open?circuit state,, an inverter open circuit fault diagnosis model built upon the fast Fourier transform (FFT) and improved Takagi?Sugeno (T?S) fuzzy neural network (FNN) integration model is proposed based on the analysis of the characteristics of the inverter power tube open circuit fault. Firstly, fault characteristics are extracted when different types of open?circuit faults occur in the power tubes according to the three?phase output current waveforms of the inverter analyzed by the FFT. Secondly, the membership function layer of the antecedent network of the T?S fuzzy neural network is designed by using the rule self?splitting technology and fuzzy C?means, and the parameters of the T?S network are trained by leveraging the adaptive Levenberg?Marquardt algorithm. The trained T?S network is used to realize the diagnosis of multiple fault types and positions of the inverter power tubes. The example results show that the diagnostic accuracy of the proposed model is up to 96%, which can significantly improve the problems existing in the open?circuit fault diagnosis of inverter power tubes.

    参考文献
    相似文献
    引证文献
引用本文

田广强,乔珊珊,侯 奥,等.基于快速傅里叶变换和改进T‑S模糊神经网络集成模型的逆变器开路故障诊断方法研究[J].电力科学与技术学报,2023,38(6):76-86.
TIAN Guangqiang, QIAO Shanshan, HOU Ao, et al. Research on open‑circuit fault diagnosis method for inverter transistor based on FFT and improved T‑S FNN ensemble model[J]. Journal of Electric Power Science and Technology,2023,38(6):76-86.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-30
  • 出版日期:
文章二维码