基于快速傅里叶变换和改进T‑S模糊神经网络集成模型的逆变器开路故障诊断方法研究
CSTR:
作者:
作者单位:

(1.黄河交通学院智能工程学院,河南 焦作 454950;2. 河南送变电建设有限公司,河南 郑州 450000;3.河南理工大学电气工程与自动化学院,河南 焦作454000)

通讯作者:

田广强(1975—),男,硕士,副教授,主要从事人工智能应用技术研究;E?mail:tectian@zjtu.edu.cn.

中图分类号:

TM464

基金项目:

国家自然科学基金(U1804143);河南省科技攻关(212102210146)


Research on open‑circuit fault diagnosis method for inverter transistor based on FFT and improved T‑S FNN ensemble model
Author:
Affiliation:

(1.School of Intelligent Engineering, Huanghe Jiaotong University, Jiaozuo 454950,China; 2. Henan Power Transmission and Transformation Construction Co.,Ltd.,Zhengzhou 450000,China;3. School of Electrical Engineering and Automation, Henan Polytechnic University, Jiaozuo 454000,China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • | | | |
  • 文章评论
    摘要:

    针对受负载扰动和测量噪声影响,逆变器开路时的故障边界间、故障与特征间存在交叠和模糊性问题,在对逆变器功率管开路故障特征的分析基础上,提出基于快速傅里叶变换和改进T?S(Takagi?Sugeno)模糊神经网络集成模型的逆变器开路故障诊断模型。首先,依据快速傅里叶变换分析逆变器的三相输出电流波形,提取功率管发生不同类型开路故障时的故障特征;其次,采用规则自分裂技术和模糊C均值设计T?S模糊神经网络的前件网络的隶属函数层;然后,依托自适应Levenberg?Marquardt算法对T?S网络参数进行训练;最后,利用训练后的T?S网络实现逆变器功率管的多种故障类型与位置的诊断。实验结果表明,所提出模型的诊断准确率高达96%,能够显著改善逆变器功率管开路故障诊断时所存在的问题。

    Abstract:

    Aiming at overlap and fuzziness between fault boundaries, faults, and characteristics under load disturbances and measurement noise influence when the inverter is in an open?circuit state,, an inverter open circuit fault diagnosis model built upon the fast Fourier transform (FFT) and improved Takagi?Sugeno (T?S) fuzzy neural network (FNN) integration model is proposed based on the analysis of the characteristics of the inverter power tube open circuit fault. Firstly, fault characteristics are extracted when different types of open?circuit faults occur in the power tubes according to the three?phase output current waveforms of the inverter analyzed by the FFT. Secondly, the membership function layer of the antecedent network of the T?S fuzzy neural network is designed by using the rule self?splitting technology and fuzzy C?means, and the parameters of the T?S network are trained by leveraging the adaptive Levenberg?Marquardt algorithm. The trained T?S network is used to realize the diagnosis of multiple fault types and positions of the inverter power tubes. The example results show that the diagnostic accuracy of the proposed model is up to 96%, which can significantly improve the problems existing in the open?circuit fault diagnosis of inverter power tubes.

    参考文献
    [1] 王晓鹏,姚帅亮,姚芳,等.逆变器功率管开路故障诊断方法综述[J],电源学报,2023,21(3):156?169. WANG Xiaopeng,YAO Shuailiang,YAO Fang,et al.Review of open?circuit fault diagnosis methods for inverter power transistors[J].Journal of Power Supply,2023,21(3):156?169.
    [2] 曹芸凯,赵涛,朱爱华,等.计及电网和线路阻抗的并联逆变器谐振抑制方法[J].电力科学与技术学报,2022,37(2):188?196. CAO Yunkai,ZHAO Tao,ZHU Aihua,et al.Resonance suppression method for parallel inverters considering the grid and line impedance[J].Journal of Electric Power Science and Technology,2022,37(2):188?196.
    [3] 刘素梅,毕天姝,薛安成.深度不对称故障下逆变电源控制策略研究[J].电力科学与技术学报,2012,27(3):34?40. LIU Sumei,BI Tianshu,XUE Ancheng.Study on the control strategy of inverter?interfaced renewable generators under severe asymmetrical faults[J].Journal of Electric Power Science and Technology,2012,27(8):34?40.
    [4] GAO Z W,CECATI CARLO,DING S X.A Survey of fault diagnosis and fault?tolerant techniques?part I: fault diagnosis with model?based and signal?based approaches[J].IEEE Transactions on Industrial Electronics,2015,62(6):3757?3767.
    [5] GAO Z W,CECATI C,DING S X.A survey of fault diagnosis and fault?tolerant techniques?part II:fault diagnosis with knowledge?based and hybrid/active approaches[J].IEEE Transactions on Industrial Electronics,2015,62(6):3768?3774.
    [6] 宋威,施伟锋,卓金宝,等.多电平逆变器开关管故障诊断方法综述[J].微电机,2019,52(10):110?117. SONG Wei,SHl Weifeng,ZHUO Jinbao,et al.Review of fault diagnosis methods for switching tubes of multilevel inverters[J].Micromotors,2019,52(10):110?117.
    [7] 崔江,王强,龚春英.结合小波与Concordia变换的逆变器功率管故障诊断技术研究[J].中国电机工程学报,2015,35 (12) : 3110?3116. CUI Jiang,WANG Qiang,GONG Chunying.Inverter power switch fault diagnosis technique research based on wavelet and concordia transform[J].Proceedings of the CSEE,2015,35(12) :3110?3116.
    [8] 闵月梅,王宏华,韩伟.基于信息融合的光伏并网逆变器故障诊断[J].电测与仪表,2014,51(1):17?21. MIN Yuemei,WANG Honghua,HAN wei.Review on fault diagnosis methods of three?phase boost type PWM rectifiers[J].Electrical Measurement & Instrumentation,2014,51(1) : 17?21.
    [9] GOU B,XU Y,XIA Y,et al.An online data driven method for simultaneous diagnosis of IGBT and current sensor fault of three?phase PWM inverter in induction motor drives[J].IEEE Transactions on Power Electronics,2020,35(12):13281?13294..
    [10] WANG T Z,QI J,XU H,et al.Fault diagnosismethod based on FFT?RPCA?SVM for cascaded?multilevel inverter[J].ISA Transactions,2016,60:156?163.
    [11] 于生宝,何建龙,王睿家,等.基于小波包分析和概率神经网络的电磁法三电平变换器故障诊断方法[J].电工技术学报,2016,(17):102?112. YU Shengbao,HE Jianlong,WANG Ruijia,et al.Fault diagnosis of electromagnetic three?level inverter based on wavelet packet analysis and probabilistic neural networks[J].Transactions of China Electrotechnical Society,2016,(17):102?112.
    [12] 何瑞,谢振刚,程昱舒.具有主动故障穿越能力的光伏逆变器自治控制方法研究[J]. 高压电器,2022,58(7):101?110. HE Rui,XIE Zhengang,CHENG Yushu.Research on autonomous control method of photovoltaic inverter with active fault ride?through capability[J]. High Voltage Apparatus,2022,58(7):101?110.
    [13] 许水清,陶松兵,何怡刚,等.基于相电流瞬时频率估计的永磁直驱风电变流器开路故障诊断[J]. 电工技术学报,2022,37(2):433?444. XU Shuiqing,TAO Songbing,HE Yigang,et al.Open?circuit fault diagnosis for back?to?back converter of PMSG wind generation system based on estimated instantaneous frequency of phase current[J].Transactions of China Electrotechnical Society,2022,37(2):433?444.
    [14] KAMEL T,BILETSKIY Y,CHANG L C.Fault diagnosis and on?Line monitoring for grid?connected single?phase inverters[J].Electric Power Systems Research,2015,126: 68?77.
    [15] 张国恒,高锋阳,石岩,等.基于贝叶斯网络的牵引逆变器开路故障多特征融合诊断方法[J].铁道科学与工程学报,2020,17(3):732?740. ZHANG Guoheng,GAO Fengyang,SHI Yan,et al.Multi?feature fusion diagnosis method ofopen circuit fault for traction inverter based on Bayesian network[J].Journal of Railway Science and Engineering,2020,17(3):732? 740.
    [16] DHUMALE R B,LOKHANDE S D.Neural network faultdiagnosis of voltage source inverter under variable loadconcditions at different frequencies[J].Measurement,2016,91:565?575.
    [17] 周嘉琪,毕利.基于GAN的光伏逆变器数据异常检测技术[J].电力系统保护与控制,2022,50(1):133?140. ZHOU Jiaqi,BI Li.Abnormal detection technology of photovoltaic inverter data based on GAN[J].Power System Protection and Control,2022,50(1):133?140.
    [18] 安群涛,孙力,孙立志,等.三相逆变器开关管故障诊断方法研究进展[J].电工技术学报,2011,26(4):135?144. AN Quntao,SUN Li,SUN Lizhi,et al.Recent Developments of fault diagnosis methods for switches in three?phase inverters[J].Transactions of China Electrotechnical Society,2011,26(4):135?144.
    [19] 王福忠,侯奥,张丽.基于T?S模糊神经网络的光伏组件在线健康诊断[J].传感器与微系统,2021,40(12):153? 156+160. WANG Fuzhong,HOU Ao,ZHANG Li.Online health diagnosis of PV modules based on T?S fuzzy neural network[J].Transducer and Microsystem Technologies,2021,40(12):153?156+160.
    [20] 姬鑫,陈超波,张彬彬,等.基于Prony算法的三电平逆变器开路故障诊断方法[J]. 电测与仪表,2023,60(8):97?104. JI Xin,CHEN Chaobo,ZHANG Binbin,et al.Open? circuit fault diagnosis method of three?level inverter based on Prony algorithm[J].Electrical Measurement & Instrumentation,2023,60(8):97?104.
    [21] 吕洪武,赵航,王宏志,等.基于模糊神经网络的MVB故障诊断算法[J].吉林大学学报:理学版,2020,58(1):104?108. LU Hongwu,ZHAO Hang,WANG Hongzhi,et al.Fault diagnosis algorithm for MVB based on fuzzy neural network[J].Journal of Jilin University:Science Edition.2020,58(1):104?108.
    [22] 李亚鹏,韩旭,于旭光,等.模型和数据混合驱动的双边协商电力市场合约价格预测方法[J].电力系统自动化,2022,46(18):179?189. LI Yapeng,HAN Xu,YU Xuguang,et al.Hybrid model?driven and data?driven approach to price forecasting in bilateral contract electricity markets[J].Automation of Electric Power Systems,2022,46(18):179?189.
    [23] 刘任,李琳.基于模拟退火与Levenberg?Marquardt混合算法的Energetic磁滞模型参数提取[J].中国电机工程学报,2019,39(3):875?884+966. LIU Ren,LI Lin.Parameter extraction for energetic hysteresis model based on the hybrid algorithm of simulated annealing and Levenberg?Marquardt[J].Proceedings of the CSEE.2019,39(3):875?884+966.
    [24] QIAO J F,ZHOU H B.Modeling of energy consumption and effluent quality using density peaks?based adaptive fuzzy neural network[J].IEEE/CAA Journal of Automatica Sinica,2018,5(5):968?976.
    [25] ZHOU H B,QIAO J F.Soft sensing of effluent ammonia nitrogen using rule automatic formation?based adaptive fuzzy neural network[J].Desalination and Water Treatment,2019,140(2):132?142.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

田广强,乔珊珊,侯 奥,等.基于快速傅里叶变换和改进T‑S模糊神经网络集成模型的逆变器开路故障诊断方法研究[J].电力科学与技术学报,2023,38(6):76-86.
TIAN Guangqiang, QIAO Shanshan, HOU Ao, et al. Research on open‑circuit fault diagnosis method for inverter transistor based on FFT and improved T‑S FNN ensemble model[J]. Journal of Electric Power Science and Technology,2023,38(6):76-86.

复制
分享
文章指标
  • 点击次数:145
  • 下载次数: 665
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2024-01-30
文章二维码