智能电网中基于批标准化LSTM的互感器故障诊断技术
CSTR:
作者:
作者单位:

(新疆大学电气工程学院,新疆 乌鲁木齐 830046)

通讯作者:

曹志强(1993—),男,硕士研究生,主要从事电能计量和互感器故障智能检测的研究;E?mail: 1820421932@qq.com

中图分类号:

TM933

基金项目:

国家自然科学基金(61963034)


Online monitoring and fault diagnosis technology of transformers based on the LSTM with batch normalization
Author:
Affiliation:

(School of Electrical Engineering,Xinjiang University, Urumqi 830046, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • | | | |
  • 文章评论
    摘要:

    互感器是高压电力系统中的必备设备之一,一旦互感器发生故障,将会导致保护装置拒动误动,造成电网瘫痪。传统的故障诊断和分类方法首先从原始过程数据中提取特征,然后采用特定的分类器进行诊断,缺乏对原始数据中动态信息的自适应处理。为了提高传统循环神经网络在诊断中的准确度,并考虑到长短记忆神经网络诊断时间较长的缺陷,提出一种基于批标准化的LSTM模型的故障诊断方法。该方法无需进行特征提取和分类器设计,直接对故障进行分类,并且能自适应学习动态故障数据。通过与其他故障诊断方法比较,该方法的诊断精度和诊断性能较高,在互感器故障诊断领域具有良好的应用价值。

    Abstract:

    As one necessary equipment in the high?voltage power system, once the transformer fails, protection devices may refuse to operate and cause the malfunction of power grids. Traditional current transformer fault diagnosis and classification methods firstly extract features from the input operation data, and then use a specific classifier to diagnosis, which lacks adaptive update processing for dynamic input information. In order to further improve the accuracy of traditional recursive neural networks, the process efficiency of long short?term memory neural networks, this paper proposes a fault diagnosis method based on the LSTM model of batch normalization (BN). This method does not require feature extraction and classifier design steps, where the fault can be classified directly, and can also be updated adaptively. Compared with other fault diagnosis methods, this method has higher diagnostic accuracy and diagnostic performance, which validating its good application value in the field of current transformer fault diagnosis.

    参考文献
    [1] 王欢,刘鹍,史强,等.大容量供电一体化电压互感器设计[J].高压电器,2020,56(4):113?117. WANG Huan,LIU Kun,SHI Qiang,et al.Design of integrated voltage transformer with large capacity power supply[J].High Voltage Apparatus,2020,56(4):113?117.
    [2] 夏小飞,芦宇峰,苏毅,等.基于相空间重构与改进GSA?SVM的高压断路器机械故障诊断[J].中国电力,2021,54(10):169?176. XIA Xiaofei,LU Yufeng,SU Yi,et al.Mechanical fault diagnosis of high voltage circuit breakers based on phase space reconstruction and improved GSA?SVM[J].Electric Power,2021,54(10):169?176.
    [3] 朱梦梦,束洪春,何兆磊,等.接地极直流电流互感器宽频特性现场试验与分析[J].电力系统自动化,2022,46(6):166?172. ZHU Mengmeng,SHU Hongchun,HE Zhaolei,et al.Field test and analysis of broadband characteristics of DC current transformer on earth electrode[J].Automation of Electric Power Systems,2022,46(6):166?172.
    [4] LI K,CHEN C,CHEN T,et al.A new approach for on?line open?circuit fault diagnosis of inverters based on current trajectory[J].Journal of Central South University,2019,26(3):743?758.
    [5] 黄梓欣,林湘宁,马啸,等.含风电继电保护应用中的电流互感器饱和电流重构方法[J].电工技术学报,2022,37(19):4823?4834. HUANG Zixin,LIN Xiangning,MA Xiao,et al.Reconstruction method of saturation current of current transformer in relay protection application related to wind power[J].Transactions of China Electrotechnical Society,2022,37(19):4823?4834.
    [6] 王守鹏,赵冬梅.电网故障诊断的研究综述与前景展望[J].电力系统自动化,2017,41(19):164?175. WANG Shoupeng,ZHAO Dongmei.Research review and prospects for power grid fault diagnosis[J].Automation of Electric Power Systems,2017,41(19):164?175.
    [7] 唐登平,蔡文嘉,周翔宇,等.基于VMD和样本熵的电磁式电流互感器故障诊断[J].电力科学与技术学报,2021,36(6):144?150. TANG Dengping,CAI Wenjia,ZHOU Xiangyu,et al.Fault diagnosis of current transformer based on VMD and sample entropy[J].Journal of Electric Power Science and Technology,2021,36(6):144?150.
    [8] 文成林,吕菲亚.基于深度学习的故障诊断方法综述[J].电子与信息学报,2020,42(1):234?248. WEN Chenglin,LV Feiya.Review on deep learning based fault diagnosis[J].Journal of Electronics & Information Technology,2020,42(1):234?248.
    [9] 蒋波涛,张博,黄新波.基于支持向量机的电机故障诊断方法综述[J].微电机,2018,51(7):58?61+67. JIANG Botao,ZHANG Bo,HUANG Xinbo.Review of motor fault diagnosis based on support vector machines[J].Micromotors,2018,51(7):58?61+67.
    [10] 荀超,陈伯建,吴翔宇,等.基于改进K?means算法的电力短期负荷预测方法研究[J].电力科学与技术学报,2022,37(1):90?95. XUN Chao,CHEN Bojian,WU Xiangyu,et al.Research on short?term power load forecasting method based on improved K?means algorithm[J].Journal of Electric Power Science and Technology,2022,37(1):90?95.
    [11] 李振华,郑严钢,李振兴,等.基于传递熵和小波神经网络的电子式电压互感器误差预测[J].电测与仪表,2021,58(3):146?152. LI Zhenhua,ZHENG Yangang,LI Zhenxing,et al.Error prediction of electronic voltage transformer based on transfer entropyand wavelet neural network[J].Electrical Measurement & Instrumentation,2021,58(3):146?152.
    [12] 唐登平,蔡文嘉,邹立,等.改进卷积神经网络在互感器故障诊断中的应用[J].计算机工程与应用,2021,57(11):239?247.TANG Dengping,CAI Wenjia,ZOU Li,et al.Application of improved convolution neural network in fault diagnosis of transformer[J].Computer Engineering and Applications,2021,57(11):239?247.
    [13] WANG C,XU Z.An intelligent fault diagnosis model based on deep neural network for few?shot fault diagnosis[J].Neurocomputing,2021,456:550?562.
    [14] 刘尧,韩伟,刘芳冰,等.基于小波变换和WVD分布的电子式互感器突变性故障协同诊断方法[J].电力系统保护与控制,2019,47(21):163?170. LIU Yao,HAN Wei,LIU Fangbing,et al.A collaborative diagnosis of abrupt?changing fault of electronic instrument transformer based on wavelet transform and WVD[J].Power System Protection and Control,2019,47(21):163?170.
    [15] CHEN Z,GUO L,GAO H,et al.A fault pulse extraction and feature enhancement method for bearing fault diagnosis[J].Measurement,2021:109718.
    [16] 陈刚,徐敏锐,穆小星,等.基于大数据的电子式互感器设备状态在线监测设计[J].电力电容器与无功补偿,2020,41(6):83?88. CHEN Gang,XU Minrui,MU Xiaoxing,et al.On?line monitoring design on electronic instrument transformer based on big data[J].Power Capacitor & Reactive Power Compensation,2020,41(6):83?88.
    [17] 王昕,曹文彬,曹敏,等.基于PCA?KELM和AT的互感器故障诊断[J].中国测试,2019,45(11):72?78. WANG Xin,CAO Wenbin,CAO Min,et al.Transformer fault diagnosis based on PCA?KELM and AT[J].China Measurement & Test,2019,45(11):72?78.
    [18] SCHMIDHUBER J.Deep learning in neural networks:An overview[J]. Neural networks,2015,61:85?117.
    [19] LINDEMANN B,MASCHLER B,SAHLAB N,et al.A survey on anomaly detection for technical systems using LSTM networks[J].Computers in Industry,2021,131:103498.
    [20] IOFFE S,SZEGEDY C.Batch normalization:Accelerating deep network training by reducing internal covariate shift[C]//32nd International Conference on Machine Learning(ICML),Lile,France,2015.
    [21] XIAO P,YIN Y,LIU B,et al.Adaptive testing based on moment estimation[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2020,50(3):911?922.
    [22] 沈涛,李舜酩.针对滚动轴承故障的批标准化CNN?LSTM诊断方法[J].计算机集成制造系统,2022,28(12):3946?3955. SHEN Tao,LI Shunming.CNN?LSTM method with batch normalization for rolling bearing fault diagnosis[J].Computer Integrated Manufacturing Systems,2022,28(12):3946?3955.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

曹志强,陈 洁.智能电网中基于批标准化LSTM的互感器故障诊断技术[J].电力科学与技术学报,2023,38(6):152-158.
CAO Zhiqiang, CHEN Jie. Online monitoring and fault diagnosis technology of transformers based on the LSTM with batch normalization[J]. Journal of Electric Power Science and Technology,2023,38(6):152-158.

复制
分享
文章指标
  • 点击次数:203
  • 下载次数: 901
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2024-01-30
文章二维码