大规模虚拟储能平抑新能源功率预测误差优化调度方法
CSTR:
作者:
作者单位:

(1.国网宁夏电力有限公司电力科学研究院,宁夏 银川 750011;2.国网宁夏电力有限公司,宁夏 银川 750001)

通讯作者:

沙伟燕(1983—),女,高级工程师,硕士,主要从事电网设备状态监测及电网数字化研究;E?mail:hysiteas12@163.com

中图分类号:

TM712

基金项目:

国网宁夏电力有限公司科技攻关项目(NX039000021)


Optimal scheduling method for stabilizing power prediction error of new energy by large‑scale virtual energy storage
Author:
Affiliation:

(1.Electric Power Research Institute, State Grid Ningxia Electric Power Co., Ltd., Yinchuan 750011, China; 2.State Grid Ningxia Electric Power Co., Ltd., Yinchuan 750001, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • | | | |
  • 文章评论
    摘要:

    大规模虚拟储能是指在电网中通过虚拟化技术将多个离散的储能设备组成一个大型的储能系统,以实现对电网功率进行平衡调节。由于新能源发电具有随机性、波动性和间歇性等特点,新能源功率预测误差控制难度较大。为提高新能源就地消纳水平,降低新能源功率预测误差,提出大规模虚拟储能平抑新能源功率预测误差优化调度方法。通过设置新能源功率预测时间分辨率,统计大规模虚拟储能平抑新能源功率分布特性,确定新能源功率预测误差分布特点,估计新能源功率预测误差置信区间,将新能源预测功率按照一定置信度纳入发电计划,设计大规模虚拟储能平抑新能源功率预测误差优化调度约束条件,构建新能源功率预测误差优化调度模型,并利用粒子群算法求解模型最优解。选择某地区实际数据设计试验,试验结果表明:所提方法对大规模虚拟储能平抑新能源功率预测误差灵敏度更高,高载能负荷调节量变化更小,且成本更低,具有显著的经济性和有效性。

    Abstract:

    Large scale virtual energy storage is a large?scale energy storage system composed of multiple discrete energy storage devices through virtualization technology in the power grid, in order to achieve power balance regulation of the power grid. Because of the randomness, fluctuation and intermittence features of new energy power generation, it is difficult to control the prediction error of new energy power. In order to improve the local consumption level of new energy and reduce the prediction error of new energy power, an optimal scheduling method of large?scale virtual energy storage to suppress the prediction error of new energy power is proposed. By setting the time resolution of new energy power prediction, the new energy power stabilizing distribution characteristics of large?scale virtual energy storage are counted, the distribution characteristics of new energy power prediction error are determined, the confidence interval of new energy power prediction error is estimated, the new energy prediction power is included in the power generation plan according to certain confidence degree, the constraint conditions of large?scale virtual energy storage to stabilize new energy power prediction error are designed, the optimal scheduling model of new energy power prediction error is constructed, and the optimal solution of the model is solved by using particle swarm optimization algorithm. The experimental results show that the proposed method is more sensitive to large?scale virtual energy storage to stabilize the prediction error of new energy power, with less change in high?energy load regulation and lower cost, and has remarkable economy and effectiveness.

    参考文献
    [1] 赵佳,孟润泉,王磊,等.考虑预测误差下孤岛直流微电网的经济调度策略[J].电网与清洁能源,2021,37(6):68?76. ZHAO Jia,MENG Runquan,WANG Lei,et al.Economic dispatching strategy of the isolated DC microgrid considering prediction error[J].Power System and Clean Energy,2021,37(6):68?76.
    [2] 余洋,权丽,贾雨龙,等.平抑新能源功率波动的聚合温控负荷改进模型预测控制[J].电力自动化设备,2021,41(3):92?99. YU Yang,QUAN Li,JIA Yulong,et al.Improved model predictive control of aggregated thermostatically controlled load for power fluctuation suppression of new energy enhanced publishing[J].Electric Power Automation Equipment,2021,41(3):92?99.
    [3] 王伟胜,王铮,董存,等.中国短期风电功率预测技术现状与误差分析[J].电力系统自动化,2021,45(1):17?27. WANG Weisheng,WANG Zheng,DONG Cun,et al.Status and error analysis of short?term forecasting technology of wind power in china enhanced publishing[J].Automation of Electric Power Systems,2021,45(1):17?27.
    [4] 朱继忠,熊小伏,刘乔波,等.现货市场下计及风光联合预测误差的经济调度[J].太阳能学报,2021,42(5):450?458. ZHU Jizhong,XIONG Xiaofu,LIU Qiaobo,et al.Economic dispatch considering joint wind and PV power forecast error in electricity spot market[J].Acta Energiae Solaris Sinica,2021,42(5):450?458.
    [5] 李惠琴,陈燕,王岗红,等.计及功率预测误差的主动配电网实时经济调度方法[J].电力系统保护与控制,2020,48(16):100?107. LI Huiqin,CHEN Yan,WANG Ganghong,et al.Real?time economic dispatching method for active distribution networks considering power prediction errors[J].Power System Protection and Control,2020,48(16): 100?107.
    [6] 郑舒,赵景涛,刘明祥.基于K?means聚类算法的风电光伏光热互补发电机组调度方法[J].电机与控制应用,2023,50(2):61?66. ZHENG Shu,ZHAO Jingtao,LIU Mingxiang.Scheduling method of wind power photovoltaic photothermal complementary generator set based on K?means clustering algorithm[J].Electric Machines & Control Application,2023,50(2):61?66.
    [7] 秦毅,刘国海.基于惯量响应支撑功率的电力系统一次调频功率估算[J].电测与仪表,2022,59(4):79?83. QIN Yi,LIU Guohai.Primary frequency power estimation of power system based on inertia response support power[J].Electrical Measurement & Instrumentation,2022,59(4):79?83.
    [8] 刘栋,魏霞,王维庆,等.基于SSA?ELM的短期风电功率预测[J].智慧电力,2021,49(6):53?59. LIU Dong,WEI Xia,WANG Weiqing,et al.Short?term wind power prediction based on SSA?ELM[J].Smart Power,2021,49(6):53?59.
    [9] 孙瑛爽,罗聪,葛乐矣.基于确定性解法的新能源微电网经济运行优化[J].中国电力,2020,53(10):149?155. SUN Yingshuang,LUO Cong,GE Leyi.Economic operation optimization for new energy microgrid based on deterministic method[J].Electric Power,2020,53(10):149?155.
    [10] 刘颖坤,刘东,翁嘉明,等.基于改进集中竞价的多能源系统交易优化方法[J].供用电,2022,39(10):75?83. LIU Yingkun,LIU Dong,WENG Jiaming,et al.Multi?energy system transaction optimization method based on improved centralized bidding[J].Distribution & Utilization,2022,39(10):75?83.
    [11] 高强,刘畅,金道杰,等.考虑综合需求响应的园区综合能源系统优化配置[J].高压电器,2021,57(8):159?168. GAO Qiang,LIU Chang,JIN Daojie,et al.Optimal configuration of park?level integrated energy system considering integrated demand response[J].High Voltage Apparatus,2021,57(8):159?168.
    [12] 郭佳兴,王金梅,张海同.基于虚拟电厂的多能源协同系统调度优化策略[J].电力建设,2022,43(12):141?151. GUO Jiaxing,WANG Jinmei,ZHANG Haitong.Scheduling optimization strategy based on virtual power plant for multi?energy collaborative system[J].Electric Power Construction,2022,43(12): 141?151.
    [13] 张婷.基于无限深度神经网络的非平衡大数据集群匿名化调度算法[J].计算技术与自动化,2022,41(3):71?76. ZHANG Ting.Anonymous scheduling algorithm for unbalanced big data cluster based on infinite depth neural network[J].Computing Technology and Automation,2022,41(3):71?76.
    [14] 李翔宇,赵冬梅.基于模糊—概率策略实时反馈的虚拟电厂多时间尺度优化调度[J].电工技术学报,2021,36(7):1446?1455. LI Xiangyu,ZHAO Dongmei.Research on multi?time scale optimal scheduling of virtual power plant based on real?time feedback of fuzzy?probability strategy[J].Transactions of China Electrotechnical Society,2021,36(7):1446?1455.
    [15] 姚艳,康家乐,汪雅静,等.考虑综合需求响应和多能储能装置的综合能源系统优化调度[J].浙江电力,2022,41(8):65?72. YAO Yan,KANG Jiale,WANG Yajing,et al.Optimal dispatching of integrated energy system considering integrated demand response and multi?energy storage devices[J].Zhejiang Electric Power,2022,41(8):65?72.
    [16] 杨德昌,王雅宁,李朝霞,等.基于改进粒子滤波的综合能源系统预测辅助状态估计[J].电力工程技术,2022,41(6):172?181. YANG Dechang,WANG Yaning,LI Zhaoxia,et al.Forecasting?aided state estimation of integrated energy systems based on improved particle filter[J].Electric Power Engineering Technology,2022,41(6): 172?181.
    [17] 王翠,姜学军.基于动态变化自适应惯性权重混沌粒子群算法[J].沈阳理工大学学报,2022,41(6):13?18. WANG Cui,JIANG Xuejun.Chaotic particle swarm optimization based on dynamic change adaptive inertial weight[J].Journal of Shenyang Ligong University,2022,41(6):13?18.
    [18] 孙欣,于慧,王宇嘉,等.基于局部协同与竞争变异的动态多种群粒子群算法[J].计算技术与自动化,2021,40(3):94?100. SUN Xin,YU Hui,WANG Yujia,et al.Dynamic multi?population particle swarm optimization based on local cooperative and competitive mutation[J].Computing Technology and Automation,2021,40(3):94?100.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

沙伟燕,胡 伟,何宁辉,等.大规模虚拟储能平抑新能源功率预测误差优化调度方法[J].电力科学与技术学报,2023,38(6):167-174.
SHA Weiyan, HU Wei, HE Ninghui, et al. Optimal scheduling method for stabilizing power prediction error of new energy by large‑scale virtual energy storage[J]. Journal of Electric Power Science and Technology,2023,38(6):167-174.

复制
分享
文章指标
  • 点击次数:167
  • 下载次数: 893
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2024-01-30
文章二维码