基于ICEEMDAN‑TA‑LSTM模型的主动配电网短期运行态势预测
CSTR:
作者:
作者单位:

(1.国网上海市电力公司电力科学研究院,上海 200437;2.上海电力大学电气工程学院,上海 200090;3.国网上海市电力公司浦东供电公司,上海 200120)

通讯作者:

田书欣(1985—),男,博士,讲师,主要从事电网运行分析等研究;E?mail:tsx396@shiep.edu.cn

中图分类号:

TM714

基金项目:

国网上海市电力公司科技项目(52094021N004)


Active distribution network operating situation prediction based on ICEEMDAN‑TA‑LSTM model
Author:
Affiliation:

(1.Electric Power Research Institute,State Grid Shanghai Electric Power Company, Shanghai 200437, China; 2.College of Electrical Engineering, Shanghai University of Electric Power, Shanghai 200090, China; 3. Pudong Power Supply Company,State Grid Shanghai Electric Power Company,Shanghai 200120,China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • | | | |
  • 文章评论
    摘要:

    主动配电网运行态势预测是充分保障配电网络安全、稳定运行及感知潜在故障的重要手段。针对主动配电网运行态势的快速精确预测,提出一种基于ICEEMDAN?TA?LSTM模型的主动配电网短期运行态势预测方法。首先,通过改进模态分解将原始序列分解成若干稳定的时序分量,降低原始数据的不规律性;其次,提出融合残差、特征以及时间注意力的三重注意力机制的主动配电网时序预测模型,深度挖掘各运行态势要素内相关性及要素间互相关性;同时,利用改进蝠鲼寻食优化算法对模型超参数寻优,综合提升模型整体预测精度;然后,从节点、支路角度出发,提出节点电压越限裕度、支路负载严重度以及电压/电流波动态势评价指标,多层面表征配电网运行态势;最后,以改进IEEE 33节点为典型算例,验证所提模型的可行性及有效性。

    Abstract:

    The active distribution network operation situation prediction is an important tool to guarantee the safety and stability of the distribution network and the hazard perception. For the fast and accurate prediction of active distribution network operation, this paper proposes an active distribution network short?term operation prediction method based on ICEEMDAN?TA?LSTM model. Firstly, the original sequence is decomposed into several stable time series components by improving the modal decomposition to reduce the irregularity of the original data. At the same time, the improved manta ray feeding optimization algorithm is used to optimize the model's hyperparameters to comprehensively improve the overall prediction accuracy of the model. Then, from the perspective of nodes and branches, the node voltage overrun margin, branch load severity and voltage/current fluctuation evaluation indexes are proposed to characterize the distribution network operation situation at multiple levels. Finally, the feasibility and effectiveness of the model proposed in this paper are verified by taking the improved IEEE 33 node as a typical calculation example.

    参考文献
    [1] 金韬,黄云龙,谈历,等.基于TTU分布式决策的配电系统弹性调度策略研究[J].供用电,2022,39(3):61?68. JIN Tao,HUANG Yunlong,TAN Li,et al.Research on resilient dispatching strategy of distribution system based on TTU distributed decision[J].Distribution & Utilization,2022,39(3):61?68.
    [2] 严正,孔祥瑞,徐潇源,等.微型同步相量测量单元在智能配电网运行状态估计中的应用[J].上海交通大学学报,2018,52(10): 1195?1205. YAN Zheng,KONG Xiangrui,XU Xiaoyuan,et al.Applications of micro synchronous phasor measurement units in state estimation of smart distribution network[J].Journal of Shanghai Jiaotong University,2018,52(10):1195?1205.
    [3] 孙怡,何光宇,翟少鹏.基于无迹卡尔曼滤波的电力系统抗差动态估计[J].电测与仪表,2020,57(4):1?6. SUN Yi,HE Guangyu,ZHAI Shaopeng.Robust dynamic estimation for power system based on unscented Kalman filter[J].Electrical Measurement & Instrumentation,2020,57(4):1?6.
    [4] 甘祥前,任超,刘林波,等.基于TLS的非线性GM?AR高边坡变形预测模型及应用[J].水电能源科学,2018,36(3):150?153. GAN Xiangqian,REN Chao,LIU Linbo,et al. Nonlinear GM?AR model of high slope deformation prediction based on TLS and its application[J].Water Resources and Power,2018,36(3):150?153.
    [5] 田波,朴在林,郭丹,等.基于改进EEMD?SE?ARMA的超短期风功率组合预测模型[J].电力系统保护与控制,2017,45(1):72?79. TIAN Bo,PIAO Zailin,GUO Dan,et al.Wind power ultra short?term model based on improved EEMD?SE?ARMA[J].Power System Protection and Control,2017,45(1):72?79.
    [6] 丁学辉,许海林,罗颖婷,等.基于随机森林特征优选与MAEPSO?ELM算法的变压器DGA故障诊断[J].电力科学与技术学报,2022,37(2):181?187. DING Xuehui,LUO Hailin,LUO Yingting,et al.Transformer DGA fault diagnosis based on the random forest feature optimization and MAEPSO?ELM algorithm[J].Journal of Electric Power Science and Technology,2022,37(2):181?187.
    [7] 张帅可,罗萍萍.基于混合分布模型的风电功率超短期预测误差分析[J].电力科学与技术学报,2020,35(5):111?118. ZHANG Shuaike,LUO Pingping.Ultra short?time prediction error analysis of wind power based on mixed distribution model[J].Journal of Electric Power Science and Technology,2020,35(5):111?118.
    [8] LEE D,KIM K.Recurrent neural network?based hourly prediction of photovoltaic power output using meteorological information[J].Energies,2019,12(2):215.
    [9] RASHEDI E,NEZAMABADIPOUR H,SARYAZDI S.GSA: a gravitational search algorithm[J].Information Sciences,2009,179(13):2232?2248.
    [10] 刘雨佳,樊艳芳,白雪岩,等.基于特征交叉机制和误差补偿的风力发电功率短期预测[J].电工技术学报,2023,38(12):3277?3288. LIU Yujia,FAN Yanfang,BAI Xueyan,et al.Short-term wind power prediction based on feature crossover mechanism and error compensation[J].Transactions of China Electrotechnical Society,2023,38(12):3277?3288.
    [11] 任建吉,位慧慧,邹卓霖,等.基于CNN?BiLSTM?Attention的超短期电力负荷预测[J].电力系统保护与控制,2022,50(8):108?116. REN Jianji,WEI Huihui,ZOU Zhuolin,et al.Ultra? short?term power load forecasting based on CNN? BiLSTM?Attention[J].Power System Protection and Control,2022,50(8):109?116.
    [12] 朱显辉,于越,师楠,等.BP神经网络的分层优化研究及其在风电功率预测中的应用[J].高压电器,2022,58(2):158?163+170. ZHU Xianhui,YU Yue,SHI Nan,et al.Research on hierarchical optimization of BP neural network and its application in wind power prediction[J].High Voltage Apparatus,2022,58(2):158?163+170.
    [13] 张其霄,董鹏,王科文,等.基于贝叶斯优化LSTM的发动机剩余寿命预测[J].火力与指挥控制,2022,47(4):85?89. ZHANG Qixiao,DONG Peng,WANG Kewen,et al.Residual service life prediction for aircraft engines based on bayesian optimal long short?term memory network[J].Fire Control & Command Control,2022,47(4): 85?89.
    [14] 高鹭,孔繁苗,张飞,等.基于IPSO?BiLSTM?AM模型的超短期风电功率预测方法[J].智慧电力,2022,50(4):27?34. GAO Lu,KONG Fanmiao,ZHANG Fei,et al.Ultra short? term wind power prediction method based on IPSO? BiLSTM?AM model[J].Smart Power,2022,50(4):27?34.
    [15] ZHAO W G,WANG L Y,ZHANG Z X.Artificial ecosystem?based optimization:a novel nature?inspired meta?heuristic algorithm[J].Neural Computing and Applications,2019,32:9383?9425.
    [16] 伍骏杰,张倩,陈凡,等.计及误差修正的变分模态分解—长短期记忆神经网络短期负荷预测[J].科学技术与工程,2022,22(12):4828?4834. WU Junjie,ZHANG Qian,CHEN Fan,et al.Short?term load forecasting with error correction and variational mode decomposition?long short?term memory[J].Science Technology and Engineering,2022,22(12):4828?4834.
    [17] 葛磊蛟,李元良,陈艳波,等.智能配电网态势感知关键技术及实施效果评价[J].高电压技术,2021,47(7):2269? 2280. GE Leijiao,LI Yuanliang,CHEN Yanbo,et al.Key technologies of situational awareness in smart distribution network and evaluation of implementation effects[J].High Voltage Engineering,2021,47(7):2269?2280.
    [18] 于涛,刁守斌,祝永刚,等.基于态势感知的智能配电网运行状态评估[J].山东电力技术,2020,47(2):13?19. YU Tao,DIAO Shoubin,ZHU Yonggang,et al.Operation state evaluation of the smart distribution systems based on the situation awareness[J].Shandong Electric Power,2020,47(2):13?19.
    [19] 李欣桐,俞小勇,阳国燕,等.基于微型PMU数据挖掘的智能配电网态势感知方法研究[J/OL].电测与仪表:1?9[2021?06?29].http://hp.kns.cnki.net.shiep.vpn358.com/kcms/detail/23.1202.TH.20210629.1233.004.html. LI Xintong,YU Xiaoyong,YANG Guoyan,et al.Research on situation awareness method of smart distribution network based on micro PMU data mining[J/OL].Electrical Measurement & Instrumentation:1?9[2021?06? 29].http://hp.kns.cnki.net.shiep.vpn358.com/kcms/detail/23.1202.TH.20210629.1233.004.html.
    [20] 李延真,郭英雷,彭博,等.基于多时间尺度状态估计的配电网实时态势预测[J].电力工程技术,2020,39(2):127?134. LI Yanzhen,GUO Yinglei,PENG Bo,et al.Real?time situation prediction of distribution network based on multi?time scale state estimation[J].Electric Power Engineering Technology,2020,39(2):127?134.
    [21] COLOMINAS M A,SCHLOTTHAUER G,TORRES M E.Improved complete ensemble EMD:a suitable tool for biomedical signal processing[J].Biomedical Signal Process and Control,2014,14:19?29.
    [22] KONG W C,DONG Z Y,JIA Y W.et al.Short?term residential load forecasting based on LSTM recurrent neural network[J].IEEE Transactions on Smart Grid,2019,10(1):841?851.
    [23] 张浩,张铁男,沈继红,等.Tent混沌粒子群算法及其在结构优化决策中的应用[J].控制与决策,2008,23(8):857?862. ZHANG Hao,ZHANG Tienan,SHEN Jihong,et al.Research on decision?makings of structure optimization based on improved Tent PSO[J].Control and Decision,2008,23(8):857?862.
    [24] 雍静,赵瑾,郇嘉嘉,等.基于混沌增强烟花算法的多能源系统并网优化调度[J].电网技术,2019,43(10):3725?3733. YONG Jing,ZHAO Jin,HUAN Jiajia,et al.Grid optimization scheduling of multi?energy systems based on chaotic enhanced fireworks algorithm[J].Power System Technology,2019,43(10):3725?3732.
    [25] 王守相,梁栋,葛磊蛟.智能配电网态势感知和态势利导关键技术[J].电力系统自动化,2016,40(12):2?8. WANG Shouxiang,LIANG Dong,GE Leijiao.Key technologies of situation awareness and orientation for smart distribution systems[J].Automation of Electric Power Systems,2016,40(12):2?8.
    [26] 苏向敬,周汶鑫,李超杰,等.基于双重注意力LSTM神经网络的可解释海上风电出力预测[J].电力系统自动化,2022,46(7):141?151. SU Xiangjing,ZHOU Wenxin,LI Chaojie,et al.Interpretable offshore wind power output forecasting based on dual?stage attentional long short?term memory[J].Automation of Electric Power Systems,2022,46(7):141?151.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘 舒,姚尚坤,周 敏,等.基于ICEEMDAN‑TA‑LSTM模型的主动配电网短期运行态势预测[J].电力科学与技术学报,2023,38(6):175-186.
LIU Shu, YAO Shangkun, ZHOU Min, et al. Active distribution network operating situation prediction based on ICEEMDAN‑TA‑LSTM model[J]. Journal of Electric Power Science and Technology,2023,38(6):175-186.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2024-01-30
文章二维码