基于图像预处理和语义分割的电力巡检机器人视觉导航方法
CSTR:
作者:
作者单位:

(长沙理工大学电气与信息工程学院,湖南 长沙 410114)

通讯作者:

樊绍胜(1966—),男,博士,教授,主要从事图像处理与电力机器人等研究;E?mail:fss508@163.com

中图分类号:

TP2;TM75

基金项目:

国家自然科学基金(61573049)


Visual navigation method for electric power inspection robot based on image preprocessing and semantic segmentation
Author:
Affiliation:

(School of Electrical & Information Engineering, Changsha University of Science & Technology, Changsha 410114,China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • | | | |
  • 文章评论
    摘要:

    由于光照和恶劣天气的影响,传统图像处理方法用于巡检机器人视觉导航方面的识别效率不高,为此,提出一种基于图像预处理和语义分割的电力巡检机器人视觉导航方法。首先,提出基于自适应伽马校正方法的图像增强方法,解决强光、弱光和光照不均对图像的影响,针对曝光情况采用LSTM预测模型自适应调整摄像头角度消除曝光,提升图像良好曝光度;然后,采用改进DenseNet网络对导航路径进行语义分割,提取路径目标区域,通过目标区域像素值的分布拟合机器人的前进路线并计算出偏移量,提供机器人调整行驶姿态的关键参数并利用模板匹配判断导航路径中的走向、定位与分叉标志。实验结果表明,该算法能有效解决由光照和恶劣天气所导致的识别精度低的问题,提高复杂环境下巡检机器人导航定位的精准度。

    Abstract:

    Due to the influence of lighting and harsh weather, the traditional image processing methods have low recognition efficiency in visual navigation of inspection robots. This paper proposes a visual navigation method for power inspection robots based on image preprocessing and semantic segmentation. An image enhancement method based on the adaptive gamma correction method is proposed to solve the influence of strong light, weak light and uneven illumination on the image. Aiming to the exposure conditions, the LSTM prediction model is used to adaptively adjust the camera angle to eliminate the exposure and improve the good exposure of the image. The improved DenseNet is used to semantically segment the navigation path and extract the path target area, fitting the robot's forward route through the pixel value distribution of the target area and calculate the offset, which provides the key parameters of robots to adjust the driving posture. Template matching is used to determine the direction, location and bifurcation signs in the navigation path. Experimental results show that the algorithm could effectively solve the problem of low recognition accuracy caused by lighting and adverse weather, and improve the accuracy of navigation and positioning of inspection robots in complex environments.

    参考文献
    [1] 周展帆,严宇,邹德华,等.高压输电线路带电更换防振锤机器人的研制[J].电力科学与技术学报,2020,35(2):178?183. ZHOU Zhanfan,YAN Yu,ZOU Dehua,et al.Development of a robot for replacing anti?vibration hammers on high? voltage transmission lines[J].Journal of Electric Power Science and Technology,2020,35(2):178?183.
    [2] 樊志强,董朝轶,王启来,等.基于多传感器数据融合的巡检机器人测姿系统研究[J].自动化与仪器仪表,2021(3):77?82+86. FAN Zhiqiang,DONG Chaoyi,WANG Qilai,et al.Research on attitude measurement system of patrol inspection robot based on multi?sensor data fusion[J].Automation & Instrumentation,2021(3):77?82+86.
    [3] CHAWLA V K,CHANDA A K,ANGRA S.Dispatching and scheduling of multi?load AGVs in FMS?A simulation study[J].Materials Today:Proceedings,2018,5(11):25358? 25367.
    [4] YUSOF T S T,TOHA S F,YUSOF H M.Path planning for visually impaired people in an unfamiliar environment using particle swarm optimization[J].Procedia Computer Science,2015,76:80?86.
    [5] 董诗绘,牛彩雯,戴琨.基于深度强化学习的变电站巡检机器人自动化控制方法研究[J]. 高压电器,2021,57(2):172?177. DONG Shihui,NIU Caiwen,DAI Kun.Study on automatic control method of substation inspection robot based on deep reinforcement learning[J].High Voltage Apparatus,2021,57(2):172?177.
    [6] IRMISCH P,BAUMBACH D,ERNST I.Robust visual? inertial odometry in dynamic environments using semantic segmentation for feature selection[J].ISPRS Annals of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2020,5(2):435?442.
    [7] GUERRERO J M,GUIJARRO M,MONTALVO M,et al.Automatic expert system based on images for accuracy crop row detection in maize fields[J].Expert Systems With Applications,2013,40(2):656?664.
    [8] 薛阳,江天博,张晓宇.基于视觉的变电站巡检机器人导航线提取方法[J].广东电力,2015,28(12):13?18. XUE Yang,JIANG Tianbo,ZHANG Xiaoyu.Vision?based substation inspection robot navigation line extraction method[J].Guangdong Electric Power,2015,28(12):13?18.
    [9] SHELHAMER E,LONG J,DARRELL T.Fully convolutional networks for semantic segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(4):640?651.
    [10] RONNEBERGER O,FISCHER P,BROX T.U?Net:convolutional networks for biomedicalimage segmentation[C]//18th International Conference on Medical Image Computing and Computer?Assisted Intervention,Munich,Germany,2015.
    [11] BADRINARAYANAN V,KENDALL A,CIPOLLA R.SegNet:adeep convolutional encoder?decoder architecture for image segmentation[J].IEEE Transactions on Pattern Analysi and Machine Intelligence,2017,39(12):2481? 2495.
    [12] ZHAO H S,SHI J P,QI X J,et al.Pyramid scene parsing network[C]//30th IEEE Conference on Computer Vision and Pattern Recognition,Honolulu,HI,USA,2017.
    [13] CHEN L C,PAPANDREOU G,KOKKINOS I,et al.DeepLab:semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2018,40(4):834?848.
    [14] 朱铮涛,萧达安.基于非线性调整的伽马校正图像增强算法[J].计算机工程与设计,2018,39(9):2822?2826+2866. ZHU Zhengtao,XIAO Daan.Gamma correction image enhancement algorithm based on nonlinear adjustment[J].Computer Engineering and Design,2018,39(9):2822? 2826+2866.
    [15] ZHANG S,WANG T,DONG J,et al.Underwater image enhancement via extended multi?scale Retinex[J].Neurocomputing,2017,245:1?9.
    [16] HOCHREITER S,SCHMIDHUBER J.Long short?term memory[J].Neural Computation,1997,9(8):1735?1780.
    [17] MERTENS T,KAUTZ J,VAN REETH F.Exposure fusion[C]//15th Pacific Conference on Computer Graphics and Applications,Maui,HI,USA,2007.
    [18] RAFIEI S,JAFARI M H,KARIMI N,et al.Dense pooling layers in fully convolutional network for skin lesion segmentation[J].Computerized Medical Imaging and Graphics,2019,78:101658.
    [19] LIN T Y,GOYAL P,GIRSHICK,R,et al.Focal loss for dense object detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(2) :318?327.
    [20] 何志勇,孙立宁,陈立国.Otsu准则下分割阈值的快速计算[J].电子学报,2013,41(2):267?272. HE Zhiyong,SUN Lining,CHEN Liguo.Fast computation of threshold based on otsu criterion[J].Acta Electronica Sinica,2013,41(2):267?272.
    [21] 刘国,吕群波,刘扬阳.基于自适应暗原色的单幅图像去雾算法[J].光子学报,2018,47(2):179?186. LIU Guo,Lü Qunbo,LIU Yangyang.Single image defogging algorithm based on adaptive dark primary color[J].Acta Photonica Sinica,2018,47(2):179?186.
    [22] SHAH P,MERCHANT S N,DESAI U B.Multifocus and multispectral image fusion based on pixel significance using multiresolution decomposition[J].Signal,Image and Video Processing,2013,7 (1):95?109.
    [23] POWERS D M W.Evaluation:from precision,recall and F?measure to ROC informedness,markedness and correlation[J].Journal of Machine Learning Technologies,2011,2(1):37?63.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨 权,樊绍胜.基于图像预处理和语义分割的电力巡检机器人视觉导航方法[J].电力科学与技术学报,2023,38(6):248-258.
YANG Quan, FAN Shaosheng. Visual navigation method for electric power inspection robot based on image preprocessing and semantic segmentation[J]. Journal of Electric Power Science and Technology,2023,38(6):248-258.

复制
分享
文章指标
  • 点击次数:209
  • 下载次数: 831
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2024-01-30
文章二维码