基于TPA‑MBLSTM模型的超短期风电功率预测
CSTR:
作者:
作者单位:

(1.河海大学人工智能与自动化学院,江苏 常州 213022;2.河海大学信息科学与工程学院,江苏 常州 213022;3.河海大学江苏省输配电装备技术重点实验室,江苏 常州 213022;)

通讯作者:

蔡昌春(1981—),男,博士,副教授,主要从事分布式发电及微电网建模、新能源功率预测等方面的研究;E?mail:fload_cai@163.com

中图分类号:

TM614

基金项目:

国家自然科学基金(51607057);常州市应用基础研究计划(CJ20220245)


Ultra‑short‑term wind power prediction based on TPA‑MBLSTM model
Author:
Affiliation:

(1. College of Artificial Intelligence and Automation,Hohai University,Changzhou 213022; 2. College of Information Sciences and Engineering,Hohai University,Changzhou 213022, China; 3.Jiangsu Key Laboratory of Power Transmission & Distribution Equipment Technology,Hohai University, Changzhou 213022, China;)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • | | | |
  • 文章评论
    摘要:

    风速变化的间歇性和波动性给风功率的精准预测带来极大挑战,充分挖掘风电功率与风速等关键因素的内在规律是提高风电功率预测精度的有效途径。提出一种结合时间模式注意力(time pattern attention,TPA)机制的多层堆叠双向长短期记忆网络的超短期风电功率预测方法。首先,利用基于密度的含噪声空间聚类方法(density based spatial clustering with noise,DBSCAN)和线性回归算法进行风功率数据集的异常值检测,利用k最邻近(k?nearest neighbor,KNN)插值法重构异常点数据;其次,综合考虑风电功率与各气象特征的内在关联性,在MBLSTM网络中引入TPA机制合理分配时间步长权重,捕捉风电功率时间序列潜在逻辑规律;最后,利用实验仿真数据进行分析验证本文方法的有效性,该方法能够充分挖掘风功率与风速影响因素的关系,从而提高其预测精度。

    Abstract:

    The intermittency and volatility of wind speed changes pose great challenges to the accurate prediction of wind power. Fully exploring the inherent laws of key factors such as wind power and wind speed is an effective way to improve the accuracy of wind power prediction. A method for ultra-short-term wind power prediction is proposed, which incorporates a temporal pattern attention (TPA) mechanism into a multi-layer stacked bidirectional long short-term memory network. Firstly, outlier detection for the wind power dataset is performed using a density-based noisy spatial clustering method (DBSCAN) and a linear regression algorithm, followed by data reconstruction of outlier points using k-nearest neighbor (KNN) interpolation. Next, the intrinsic correlations between wind power and various meteorological features are comprehensively considered, and the TPA mechanism is introduced into the MBLSTM network to properly allocate time step weights, capturing the underlying logical patterns of the wind power time series. Finally, the effectiveness of the proposed method is verified through experimental simulation data analysis. Results show that this method can fully explore the relationship between wind power and wind speed influencing factors, thereby improving its prediction accuracy.

    参考文献
    [1] 张春雁,窦真兰,王俊,等.电解水制氢—储氢—供氢在电力系统中的发展路线[J].发电技术,2023,44(3):305-317. ZHANG Chunyan,DOU Zhenlan,WANG Jun,et al.Development route of hydrogen production by water electrolysis,hydrogen storage and hydrogen supply in power system[J].Power Generation Technology,2023,44 (3):305-317.
    [2] 欧旭鹏,任涛,王玉鹏,等.基于改进麻雀搜索算法优化深度学习网络超参数的短期风电功率预测[J].智慧电力,2023,51(3):31-38+52. OU Xupeng,REN Tao,WANG Yupeng,et al.Short-term wind power prediction by optimizing deep learning network hyper-parameters based on ISSA[J].Smart Power,2023,51(3):31-38+52.
    [3] 李雪玲,刘洋,李振伟,等.基于气象分型改进构造不确定集的多微网低碳鲁棒经济调度[J].电力建设,2023,44(8):142-156. LI Xueling,LIU Yang,LI Zhenwei,et al.Robust low-carbon economic dispatch of multiple microgrids based on improved uncertainty set of meteorological classification[J].Electric Power Construction,2023,44(8):142-156[J].Electric Power Construction,2023,44 (8):142-156.
    [4] 贾睿,杨国华,郑豪丰,等.基于自适应权重的CNN-LSTM&GRU组合风电功率预测方法[J].中国电力,2022,55(5):47-56+110. JIA Rui,YANG Guohua,ZHENG Haofeng,et al.Combined wind power prediction method based on CNN-LSTM & GRU with adaptive weights[J].Electric Power,2022,55(5):47-56+110.
    [5] 杨本星,王伟,杨明轩,等.辅助风电并网的构网型储能控制策略研究[J].高压电器,2023,59 (7):56-64. YANG Benxing,WANG Wei,YANG Mingxuan,et al.Research on grid-forming energy storage control strategy for auxiliary wind power grid-connection[J].High Voltage Apparatus,2023,59(7):56-64.
    [6] 韩丽,于晓娇,喻洪波,等.基于波动趋势分段的风电功率区间预测[J].电力系统自动化,2023,47(18):206-215. HAN Li,YU Xiaojiao,YU Hongbo,et al.Wind power interval prediction based on fluctuation trend segmentation[J].Automation of Electric Power Systems,2023,47(18):206-215.
    [7] 胡正阳,高丙团,张磊,等.风电机组双向支撑能力分析与自适应惯量控制策略[J].电工技术学报,2023,38(19):5224-5240. HU Zhengyang,GAO Bingtuan,ZHANG Lei,et al.Bidirectional support capability analysis and adaptive inertial control strategy of wind turbine[J].Transactions of China Electrotechnical Society,2023,38(19):5224-5240.
    [8] 刘新宇,蒲欣雨,李继方,等.基于贝叶斯优化的VMD-GRU短期风电功率预测[J].电力系统保护与控制,2023,51(21):158-165. LIU Xinyu,PU Xinyu,LI Jifang,et al.Short-term wind power prediction of a VMD-GRU based on Bayesian optimization[J].Power System Protection and Control,2023,51(21):158-165.
    [9] 汤义勤,邹宏亮,蒋旭,等.基于VMD和贝叶斯优化LSTM的母线负荷预测方法[J].电网与清洁能源,2023,39(02):46-52+59. TANG Yiqin,ZOU Hongliang,JIANG Xu,et al.A bus load forecasting method based on VMD and bayesian optimization LSTM[J].Power System and Clean Energy,2023,39 (02):46-52+59
    [10] 宋家康,赵建勇,孙海霞,等.基于多目标协同训练的风电功率预测提升算法[J].电力工程技术,2023,42(6):232-240. SONG Jiakang,ZHAO Jianyong,SUN Haixia,et al.Wind power prediction and improvement algorithm based on multi-objective collaborative training[J].Electric Power Engineering Technology,2023,42(6):232-240.
    [11] 基于频域分解和精度加权集成的分布式风电功率预测方法[J].电力建设,2023,44(5):84-93. WANG Shaomin,WANG Shouxiang,ZHAO Qianyu,et al.Distributed wind power forecasting method based on frequency domain decomposition and precision-weighted ensemble[J].Electric Power Construction,2023,44(5):84-93
    [12] 庞博文,丁月明,杜善慧,等.基于CEEMDAN-BO-LSTNet的风电出力短期预测[J].电测与仪表,2023,60 (9):109-116+170. PANG Bowen,DING Yueming,DU Shanhui,et al.Short-term forecasting of wind power output based on CEEMDAN-BO-LSTNet[J].Electrical Measurement & Instrumentation,2023,60(9):109-116+170.
    [13] 唐冬来,周强,宋卫平,等.基于网格聚类的峡谷风电短期功率预测方法[J].供用电,2023,40(1):80-87. TANG Donglai,ZHOU Qiang,SONG Weiping,et al.Short term power prediction method for canyon wind power based on grid clustering[J].Distribution & Utilization,2023,40 (1):80-87.
    [14] 王鑫,李慧,叶林,等.考虑风速波动特性的 VMD-GRU短期风电功率预测[J].电力科学与技术学报,2021,36(4):20-28. WANG Xin,LI Hui,YE Lin,et al.VMD-GRU based short-term wind power forecast considering wind speed fluctuation characteristics[J].Journal of Electric Power Science and Technology,2021,36(4):20-28.
    [15] 张群,唐振浩,王恭,等.基于长短时记忆网络的超短期风功率预测模型[J].太阳能学报,2021,42(10):275-281. ZHANG Qun,TANG Zhenhao,WANG Gong,et al.Ultra-short term wind power forecasting model based on short-term and short-term memory network[J].Acta Energiae Solaris Sinica,2021,42(10):275-281.
    [16] 朱乔木,李弘毅,王子琪,等.基于长短期记忆网络的风电场发电功率超短期预测[J].电网技术,2017,41(12):3797-3802. ZHU Qiaomu,LI Hongyi,WANG Ziqi,et al.Short-Term Wind Power Forecasting Based on LSTM[J].Power System Technology,2017,41(12):3797-3802.
    [17] 薛阳,王琳,王舒,等.一种结合CNN和GRU网络的超短期风电预测模型[J].可再生能源,2019,37(3):456-462. XUE Yang,WANG Lin,WANG Shu,et al.An ultra-short-term wind power forecasting model combined with CNN and GRU net-works[J].Renewable Energy Resources,2019,37(3):456-462.
    [18] 韩朋,张晓琳,张飞,等.基于AM-LSTM模型的超短期风电功率预测[J].科学技术与工程,2020,20(21):8594-8600. HAN Peng,ZHANG Xiaolin,ZHANG Fei,et al.Ultra-short-term wind power prediction based on AM-LSTM model[J].Science Technology and Engineering,2020,20(21):8594-8600.
    [19] 杨晶显,张帅,刘继春,等.基于VMD和双重注意力机制LSTM的短期光伏功率预测[J].电力系统自动化,2021,45(3):174-182. YANG Jingxian,ZHANG Shuai,LIU Jichun,et al.Short-term photovoltaic power prediction based on variational mode decomposition and long short-term memory with dual-stage attention mechanism[J].Automation of Electric Power Systems,2021,45(3):174-182.
    [20] SHIH S Y,SUN F K,LEE H.Temporal pattern attention for multivariate time series forecasting[J].Machine Learning,2019,108:1421-1441.
    [21] 杨茂,杨琼琼.风电机组风速—功率特性曲线建模研究综述[J].电力自动化设备,2018,38(2):34-43. YANG Mao,YANG Qiongqiong.Review of modeling of wind speed-power characteristic curve for wind turbine[J].Electric Power Automation Equip-ment,2018,38(2):34-43.
    [22] MORRISON R,LIU X,LIN Z.Anomaly detection in wind turbine SCADA data for power curve cleaning[J].Renewable Energy,2022,184:473-486.
    [23] 娄建楼,胥佳,陆恒,等.基于功率曲线的风电机组数据清洗算法[J].电力系统自动化,2016,40(10):116-121. LOU Jianlou,XU Jia,LU Heng.Wind turbine data-cleaning algorithm based on power curve[J].Automation of Electric Power Systems,2016,40(10):116-121.
    [24] KISVARI A,LIN Z,LIU X.Wind power forecasting?A data-driven method along with gated recurrent neural network[J].Renewable Energy,2021,163:1895-1909.
    [25] KUSIAK A,VERMA A.Monitoring wind farms with performance curves[J].IEEE transactions on sustainable energy,2012,4(1):192-199.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

蔡昌春,范靖浩,李源佳,等.基于TPA‑MBLSTM模型的超短期风电功率预测[J].电力科学与技术学报,2024,(1):47-56.
CAI Changchun, FAN Jinghao, LI Yuanjia, et al. Ultra‑short‑term wind power prediction based on TPA‑MBLSTM model[J]. Journal of Electric Power Science and Technology,2024,(1):47-56.

复制
分享
文章指标
  • 点击次数:399
  • 下载次数: 867
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2024-04-22
文章二维码