基于TPA‑MBLSTM模型的超短期风电功率预测
作者:
作者单位:

(1.河海大学人工智能与自动化学院,江苏 常州 213022;2.河海大学信息科学与工程学院,江苏 常州 213022;3.河海大学江苏省输配电装备技术重点实验室,江苏 常州 213022;)

作者简介:

通讯作者:

蔡昌春(1981—),男,博士,副教授,主要从事分布式发电及微电网建模、新能源功率预测等方面的研究;E?mail:fload_cai@163.com

中图分类号:

TM614

基金项目:

国家自然科学基金(51607057);常州市应用基础研究计划(CJ20220245)


Ultra‑short‑term wind power prediction based on TPA‑MBLSTM model
Author:
Affiliation:

(1. College of Artificial Intelligence and Automation,Hohai University,Changzhou 213022; 2. College of Information Sciences and Engineering,Hohai University,Changzhou 213022, China; 3.Jiangsu Key Laboratory of Power Transmission & Distribution Equipment Technology,Hohai University, Changzhou 213022, China;)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    风速变化的间歇性和波动性给风功率的精准预测带来极大挑战,充分挖掘风电功率与风速等关键因素的内在规律是提高风电功率预测精度的有效途径。提出一种结合时间模式注意力(time pattern attention,TPA)机制的多层堆叠双向长短期记忆网络的超短期风电功率预测方法。首先,利用基于密度的含噪声空间聚类方法(density based spatial clustering with noise,DBSCAN)和线性回归算法进行风功率数据集的异常值检测,利用k最邻近(k?nearest neighbor,KNN)插值法重构异常点数据;其次,综合考虑风电功率与各气象特征的内在关联性,在MBLSTM网络中引入TPA机制合理分配时间步长权重,捕捉风电功率时间序列潜在逻辑规律;最后,利用实验仿真数据进行分析验证本文方法的有效性,该方法能够充分挖掘风功率与风速影响因素的关系,从而提高其预测精度。

    Abstract:

    The intermittency and volatility of wind speed changes pose great challenges to the accurate prediction of wind power. Fully exploring the inherent laws of key factors such as wind power and wind speed is an effective way to improve the accuracy of wind power prediction. A method for ultra-short-term wind power prediction is proposed, which incorporates a temporal pattern attention (TPA) mechanism into a multi-layer stacked bidirectional long short-term memory network. Firstly, outlier detection for the wind power dataset is performed using a density-based noisy spatial clustering method (DBSCAN) and a linear regression algorithm, followed by data reconstruction of outlier points using k-nearest neighbor (KNN) interpolation. Next, the intrinsic correlations between wind power and various meteorological features are comprehensively considered, and the TPA mechanism is introduced into the MBLSTM network to properly allocate time step weights, capturing the underlying logical patterns of the wind power time series. Finally, the effectiveness of the proposed method is verified through experimental simulation data analysis. Results show that this method can fully explore the relationship between wind power and wind speed influencing factors, thereby improving its prediction accuracy.

    参考文献
    相似文献
    引证文献
引用本文

蔡昌春,范靖浩,李源佳,等.基于TPA‑MBLSTM模型的超短期风电功率预测[J].电力科学与技术学报,2024,(1):47-56.
CAI Changchun, FAN Jinghao, LI Yuanjia, et al. Ultra‑short‑term wind power prediction based on TPA‑MBLSTM model[J]. Journal of Electric Power Science and Technology,2024,(1):47-56.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-22
  • 出版日期:
文章二维码