基于改进旋转森林算法的窃电检测研究
CSTR:
作者:
作者单位:

(上海电力大学电气工程学院,上海 200090)

作者简介:

通讯作者:

梅智聪(1998—),男,硕士研究生,主要从事电力系统窃电检测方向的研究;E?mail:1762860273@qq.com

中图分类号:

TM731

基金项目:

国家自然科学基金(61873159)


Research on electricity theft detection based on improved rotation forest algorithm
Author:
Affiliation:

(College of Electrical Engineering, Shanghai University of Electric Power, Shanghai 200090, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    如何准确检测出用户侧窃电行为是长期存在于各供电公司一个难点,传统的窃电检测方案均存在一定的局限性。针对窃电检测领域正负类样本高度不平衡,且单一分类模型表现不佳的问题,提出一种基于改进旋转森林算法的窃电检测方法。旋转森林算法采用主成分分析(principal component analysis,PCA)进行特征提取,利用原始训练集的所有主成分训练每个基分类器。在经典的旋转森林算法基础上,使用改进合成少数类过采样(synthetic minority oversampling technique,SMOTE)算法平衡样本子集中的正负类样本;使用Bagging算法中的Bootstrap抽样对训练子集进一步抽样;按准确率对基分类器进行选择性集成等3个方面的改进。算例使用华东某地区实际用户数据,结果表明所提窃电检测方法对比单一分类模型和现有集成学习策略,在多项评价指标下均取得更好的效果。

    Abstract:

    Detecting user-side electricity theft accurately has long been a challenge for power supply companies, with traditional theft detection methods having certain limitations. Addressing the highly imbalanced positive and negative samples in the field of theft detection, and the poor performance of single classification models, this study proposes a theft detection method based on an improved Rotation Forest algorithm. The Rotation Forest algorithm uses Principal Component Analysis (PCA) for feature extraction, training each base classifier with all principal components of the original training set. Building upon the classical Rotation Forest algorithm, improvements are made in three aspects: balancing the positive and negative samples in the subset using the Synthetic Minority Oversampling Technique (SMOTE) algorithm, further sampling the training subset using Bootstrap sampling in the Bagging algorithm, and selectively integrating base classifiers based on accuracy. A case study using actual user data from a region in East China demonstrates that the proposed theft detection method achieves better results in multiple evaluation metrics compared to single classification models and existing ensemble learning strategies.

    参考文献
    相似文献
    引证文献
引用本文

刘建锋,梅智聪,刘梦琪,等.基于改进旋转森林算法的窃电检测研究[J].电力科学与技术学报,2024,(1):93-104.
LIU Jianfeng, MEI Zhicong, LIU Mengqi, et al. Research on electricity theft detection based on improved rotation forest algorithm[J]. Journal of Electric Power Science and Technology,2024,(1):93-104.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-22
  • 出版日期:
文章二维码