基于充电桩利用率的充电负荷超短期预测方法研究
作者:
作者单位:

(1.智能电网与海岛微网联合实验室,海南 海口 570226;2.海南电网有限责任公司电力科学研究院, 海南 海口 570226;3.武汉理工大学自动化学院, 湖北 武汉 430070; 4 中国电力工程顾问集团中南电力设计院有限公司, 湖北 武汉 430071)

作者简介:

通讯作者:

唐金锐(1986—),男,博士,副教授,主要从事配电网规划、分析与保护技术等研究;E?mail:tangjinrui@whut.edu.cn

中图分类号:

TM863

基金项目:

中国南方电网有限责任公司科技项目(073000KK52220001)


A novel ultra short‑term charging load forecasting method based on usage degree of charging piles
Author:
Affiliation:

(1.Smart Grid and Island Microgrid Joint Laboratory, Haikou 570226, China; 2.Electric Power Research Institute of Hainan Power Grid Co., Ltd., Haikou 570226, China;3.School of Automation, Wuhan University of Technology, Wuhan 430070, China; 4.Central Southern China Electric Power Design Institute Co., Ltd., China Power Engineering Consulting Group, Wuhan 430071, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为消除空间分布不确定性对电动汽车充电负荷超短期预测准确性的影响,提出一种基于充电桩利用率的电动汽车充电负荷超短期预测方法。首先,从海量充电交易数据中提取形成区域内各充电桩充电负荷功率,编码后得到充电桩利用率的量化值;然后,将充电桩利用率以及充电负荷功率数据融合,得到长短期记忆神经网络的训练样本和测试集,形成电动汽车充电负荷超短期预测的深度学习模型,时间分辨率可达0.5 h;最后,在不同规模充电负荷的场景下验证了所提方法的有效性和准确性。结果表明,相比无优化的长短记忆神经网络负荷预测方法,所提方法得到的预测值平均绝对百分比误差提高了约5%,可为未来车网互动下的配电网调度优化运行提供重要支撑。

    Abstract:

    To eliminate the impact of spatial distribution uncertainty on the accuracy of ultra-short-term forecasting of electric vehicle charging load, a method based on the utilization rate of charging piles for electric vehicle charging load ultra-short-term forecasting is proposed. Firstly, the charging load power of each charging pile within the region is extracted from massive charging transaction data, and then quantified values of the utilization rate of charging piles are obtained through encoding. Then, the utilization rate of charging piles and charging load power data are merged to obtain training samples and test sets for long short-term memory (LSTM) neural networks, forming a deep learning model for ultra-short-term forecasting of electric vehicle charging load, with a time resolution of up to 0.5 h. Finally, the effectiveness and accuracy of the proposed method are validated in scenarios with different scales of charging load. The results indicate that compared to the unoptimized LSTM neural network load forecasting method, the proposed method achieves an increase in the average absolute percentage error of approximately 5%. This can provide significant support for the optimization operation of distribution grids under future vehicle-grid interaction.

    参考文献
    相似文献
    引证文献
引用本文

庞松岭,赵雨楠,唐金锐,等.基于充电桩利用率的充电负荷超短期预测方法研究[J].电力科学与技术学报,2024,(1):115-123,133.
PANG Songling, ZHAO Yunan, TANG Jinrui, et al. A novel ultra short‑term charging load forecasting method based on usage degree of charging piles[J]. Journal of Electric Power Science and Technology,2024,(1):115-123,133.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-22
  • 出版日期:
文章二维码