基于充电桩利用率的充电负荷超短期预测方法研究
CSTR:
作者:
作者单位:

(1.智能电网与海岛微网联合实验室,海南 海口 570226;2.海南电网有限责任公司电力科学研究院, 海南 海口 570226;3.武汉理工大学自动化学院, 湖北 武汉 430070; 4 中国电力工程顾问集团中南电力设计院有限公司, 湖北 武汉 430071)

通讯作者:

唐金锐(1986—),男,博士,副教授,主要从事配电网规划、分析与保护技术等研究;E?mail:tangjinrui@whut.edu.cn

中图分类号:

TM863

基金项目:

中国南方电网有限责任公司科技项目(073000KK52220001)


A novel ultra short‑term charging load forecasting method based on usage degree of charging piles
Author:
Affiliation:

(1.Smart Grid and Island Microgrid Joint Laboratory, Haikou 570226, China; 2.Electric Power Research Institute of Hainan Power Grid Co., Ltd., Haikou 570226, China;3.School of Automation, Wuhan University of Technology, Wuhan 430070, China; 4.Central Southern China Electric Power Design Institute Co., Ltd., China Power Engineering Consulting Group, Wuhan 430071, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为消除空间分布不确定性对电动汽车充电负荷超短期预测准确性的影响,提出一种基于充电桩利用率的电动汽车充电负荷超短期预测方法。首先,从海量充电交易数据中提取形成区域内各充电桩充电负荷功率,编码后得到充电桩利用率的量化值;然后,将充电桩利用率以及充电负荷功率数据融合,得到长短期记忆神经网络的训练样本和测试集,形成电动汽车充电负荷超短期预测的深度学习模型,时间分辨率可达0.5 h;最后,在不同规模充电负荷的场景下验证了所提方法的有效性和准确性。结果表明,相比无优化的长短记忆神经网络负荷预测方法,所提方法得到的预测值平均绝对百分比误差提高了约5%,可为未来车网互动下的配电网调度优化运行提供重要支撑。

    Abstract:

    To eliminate the impact of spatial distribution uncertainty on the accuracy of ultra-short-term forecasting of electric vehicle charging load, a method based on the utilization rate of charging piles for electric vehicle charging load ultra-short-term forecasting is proposed. Firstly, the charging load power of each charging pile within the region is extracted from massive charging transaction data, and then quantified values of the utilization rate of charging piles are obtained through encoding. Then, the utilization rate of charging piles and charging load power data are merged to obtain training samples and test sets for long short-term memory (LSTM) neural networks, forming a deep learning model for ultra-short-term forecasting of electric vehicle charging load, with a time resolution of up to 0.5 h. Finally, the effectiveness and accuracy of the proposed method are validated in scenarios with different scales of charging load. The results indicate that compared to the unoptimized LSTM neural network load forecasting method, the proposed method achieves an increase in the average absolute percentage error of approximately 5%. This can provide significant support for the optimization operation of distribution grids under future vehicle-grid interaction.

    参考文献
    [1] 王靖添,马晓明.中国交通运输碳排放影响因素研究——基于双层次计量模型分析[J].北京大学学报(自然科学版),2021,57(6):1133-1142. WANG Jingtian,MA Xiaoming.Influencing factors of carbon emissions from transportation in China:empirical analysis based on two-level econometrics method[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2021,57(6):1133-1142.
    [2] 王海鑫,袁佳慧,陈哲,等.智慧城市车—站—网一体化运行关键技术研究综述及展望[J].电工技术学报,2022,37(1):112-132. WANG Haixin,YUAN Jiahui,CHEN Zhe,et al.Review and prospect of key techniques for vehicle-station-network integrated operation in smart city[J].Transactions of China Electrotechnical Society,2022,37(1):112-132.
    [3] 欧旭鹏,唐云,张凯,等.基于CEEMDAN-IDOA-BiLSTM的超短期风电功率预测[J].电网与清洁能源,2023,39(11):142-150. OU Xupeng,TANG Yun,ZHANG Kai,et al.The ultra short term wind power prediction based on CEEMDAN-IDOA-BiLSTM[J].Power System and Clean Energy,2023,39(11):142-150.
    [4] 雷旭,马鹏飞,宋智帅,等.计及风电预测误差的柔性负荷日内调度模型[J].发电技术,2022,43(3):485-491. LEI Xu,MA Pengfei,SONG Zhishuai,et al.A flexible intraday load dispatch model considering wind power prediction errors[J].Power Generation Technology,2022,43(3):485-491.
    [5] 彭鑫,刘俊,刘嘉诚,等.图像化数据驱动的电力系统暂态稳定性在线评估方法[J].智慧电力,2022,50(11):17-24. PENG Xin,LIU Jun,LIU Jiacheng,et al.Graphical data-driven online assessment of power system transient stability[J].Smart Power,2022,50(11):17-24.
    [6] 纪晓妍,方春华,游海鑫.基于多元非线性回归模型的220 kV电缆油终端缺陷场强预测[J].智慧电力,2023,51(8):96-103. JI Xiaoyan,FANG Chunhua,YOU Haixin.Field strength prediction of 220 kV cable oil terminal defects based on multivariate nonlinear regression model[J].Smart Power,2023,51(8):96-103.
    [7] 汪林光,谢小荣,贺静波,等.采用多元线性回归方法分析短路比对风电并网系统小干扰稳定性的影响[J].电力建设,2023,44(4):113-118. WANG Linguang,XIE Xiaorong,HE Jingbo,et al.Multiple-linear-regression based analysis of the impact of short circuit ratio on small-disturbance stability of wind power grid-connection systems[J].Electric Power Construction,2023,44(4):113-118.
    [8] 石立国,李延真,刘继彦,等.电动汽车充电站超短期充电负荷预测的改进GRU方法[J].供用电,2023,40(6):42-47. SHI Liguo,LI Yanzhen,LIU Jiyan,et al.Improved GRU method for ultra-short-term charging load forecasting at electric vehicle charging stations[J].Distribution & Utilization,2023,40(6):42-47.
    [9] 胡金迪,刘思,沈广,等.基于端对端通信的充电桩无功响应分布式模型预测控制策略[J].电力系统自动化,2022,46(4):25-35. HU Jindi,LIU Si,SHEN Guang,et al.Distributed model predictive control strategy of reactive power response for charging piles based on peer-to-peer communication[J].Automation of Electric Power Systems,2022,46(4):25-35.
    [10] 黄超,卜思齐,陈麒宇,等.元电力:新一代智能电网[J].发电技术,2022,43(2):287-304. HUANG Chao,BU Siqi,CHEN Qiyu,et al.Meta-power:next-generation smart grid[J].Power Generation Technology,2022,43(2):287-304.
    [11] 谭笑,陈杰,曹京荥,等.Logistic回归和支持向量机在电缆老化状态评估中的应用与比较[J].高压电器,2023,59(5):113-121. TAN Xiao,CHEN Jie,CAO Jingying,et al.Application and comparison of logistic regression and support vector machine in condition assessment of cable aging condition[J].High Voltage Apparatus,2023,59(5):113-121.
    [12] 赵阳,范文奕,安佳坤,等.基于智能加权混合模型的新型电力系统电量预测方法[J].电测与仪表,2022,59(12):56-63. ZHAO Yang,FAN Wenyi,AN Jiakun,et al.A method of novel power system electricity forecasting based on intelligent weighted hybrid model[J].Electrical Measurement & Instrumentation,2022,59(12):56-63.
    [13] 张美霞,叶睿琦,杨秀,等.基于多维状态空间MCMC充电负荷预测的充电站规划[J].电力科学与技术学报,2022,37(4):78-87. ZHANG Meixia,YE Ruiqi,YANG Xiu,et al.Charging station planning for electric vehicle based on charging load forecast by MCMC method in multi-dimensional state space[J].Journal of Electric Power Science and Technology,2022,37(4):78-87.
    [14] 牛牧童,廖凯,杨健维,等.考虑季节特性的多时间尺度电动汽车负荷预测模型[J].电力系统保护与控制,2022,50(5):74-85. NIU Mutong,LIAO Kai,YANG Jianwei,et al.Multi-time-scale electric vehicle load forecasting model considering seasonal characteristics[J].Power System Protection and Control,2022,50(5):74-85.
    [15] 曾亮,雷舒敏,王珊珊,等.基于OVMD-SSA-DELM-GM模型的超短期风电功率预测方法[J].电网技术,2021,45(12):4701-4710. ZENG Liang,LEI Shumin,WANG Shanshan,et al.Ultra-short-term wind power prediction based on OVMD-SSA-DELM-GM model[J].Power System Technology,2021,45(12):4701-4710.
    [16] 张秋桥,王冰,汪海姗,等.基于生长曲线与气温累积效应的气象负荷预测[J].现代电力,2021,38(2):171-177. ZHANG Qiuqiao,WANG Bing,WANG Haishan,et al.Meteorological load forecasting based on growth curve and temperature accumulation effect[J].Modern Electric Power,2021,38(2):171-177.
    [17] 朱继忠,董瀚江,李盛林,等.数据驱动的综合能源系统负荷预测综述[J].中国电机工程学报,2021,41(23):7905-7923. ZHU Jizhong,DONG Hanjiang,LI Shenglin,et al.Review of data-driven load forecasting for integrated energy system[J].Proceedings of the CSEE,2021,41(23):7905-7923.
    [18] 刘文霞,胡江,吴方权,等.考虑温度—负荷相关性的调温负荷曲线拟合方法研究[J].电网与清洁能源,2021,37(4):8-14. LIU Wenxia,HU Jiang,WU Fangquan,et al.A study on the fitting method of temperature-adjusting load curve considering the temperature-load correlation[J].Power System and Clean Energy,2021,37(4):8-14.
    [19] 张红,袁铁江,谭捷.统一能源系统氢负荷中长期预测[J].中国电机工程学报,2021,41(10):3364-3372. ZHANG Hong,YUAN Tiejiang,TAN Jie.Medium and long-term forecast of hydrogen load in unified energy system[J].Proceedings of the CSEE,2021,41(10):3364-3372.
    [20] 廖旎焕,胡智宏,马莹莹,等.电力系统短期负荷预测方法综述[J].电力系统保护与控制,2011,39(1):147-152. LIAO Nihuan,HU Zhihong,MA Yingying,et al.Review of the short-term load forecasting methods of electric power system[J].Power System Protection and Control,2011,39(1):147-152.
    [21] 韩富佳,王晓辉,乔骥,等.基于人工智能技术的新型电力系统负荷预测研究综述[J].中国电机工程学报,2023,43(22):8569-8592.HAN Fujia,WANG Xiaohui,QIAO Ji,et al.Review on artificial intelligence based load forecasting research for the new-type power system[J].Proceedings of the CSEE,2023,43(22):8569-8592.
    [22] 张淑清,要俊波,张立国,等.基于改进深度稀疏自编码器及FOA-ELM的电力负荷预测[J].仪器仪表学报,2020,41(4):49-57. ZHANG Shuqing,YAO Junbo,ZHANG Liguo,et al.Power load forecasting based on improved deep sparse auto-encoder and FOA-ELM[J].Chinese Journal of Scientific Instrument,2020,41(4):49-57.
    [23] 蔡舒平,闫静,刘国海,等.基于Fisher信息和在线SVR的智能电网气象敏感负荷预测动态建模技术[J].中国电机工程学报,2020,40(11):3441-3451. CAI Shuping,YAN Jing,LIU Guohai,et al.A dynamic modeling methodology based on Fisher information and on-line SVR for smart grids weather sensitive load forecasting[J].Proceedings of the CSEE,2020,40(11):3441-3451.
    [24] 陈振宇,刘金波,李晨,等.基于LSTM与XGBoost组合模型的超短期电力负荷预测[J].电网技术,2020,44(2):614-620. CHEN Zhenyu,LIU Jinbo,LI Chen,et al.Ultra short-term power load forecasting based on combined LSTM-XGBoost model[J].Power System Technology,2020,44(2):614-620.
    [25] 李玉志,刘晓亮,邢方方,等.基于Bi-LSTM和特征关联性分析的日尖峰负荷预测[J].电网技术,2021,45(7):2719-2730. LI Yuzhi,LIU Xiaoliang,XING Fangfang,et al.Daily peak load prediction based on correlation analysis and Bi-directional long short-term memory network[J].Power System Technology,2021,45(7):2719-2730.
    [26] 樊江川,于昊正,刘慧婷,等.基于多分支门控残差卷积神经网络的短期电力负荷预测[J].中国电力,2022,55(11):155-162+174. FAN Jiangchuan,YU Haozheng,LIU Huiting,et al.Short-term load forecasting based on multi-branch residual gated convolution neural network[J].Electric Power,2022,55(11):155-162+174.
    [27] 程杉,赵子凯,陈诺,等.计及耦合因素的电动汽车充电负荷时空分布预测[J].电力工程技术,2022,41(3):194-201+208. CHENG Shan,ZHAO Zikai,CHEN Nuo,et al.Prediction of temporal and spatial distribution of electric vehicle charging load considering coupling factors[J].Electric Power Engineering Technology,2022,41(3):194-201+208.
    [28] 裴振坤,王学梅,康龙云.考虑用户充电计划的电动汽车辅助调频控制策略[J].电力工程技术,2023,42(1):88-97. PEI Zhenkun,WANG Xuemei,KANG Longyun.Auxiliary frequency regulation control strategy for electric vehicles considering users' charging plans[J].Electric Power Engineering Technology,2023,42(1):88-97.
    [29] 江里舟,别朝红,龙涛,等.能源交通一体化系统发展模式与运行关键技术[J].中国电机工程学报,2022,42(4):1285-1301. JIANG Lizhou,BIE Zhaohong,LONG Tao,et al.Development model and key technology of integrated energy and transportation system[J].Proceedings of the CSEE,2022,42(4):1285-1301.
    [30] 张谦,王众,谭维玉,等.基于MDP随机路径模拟的电动汽车充电负荷时空分布预测[J].电力系统自动化,2018,42(20):59-66. ZHANG Qian,WANG Zhong,TAN Weiyu,et al.Spatial-temporal distribution prediction of charging load for electric vehicle based on MDP random path simulation[J].2018,42(20):59-66.
    [31] 陈丽丹,张尧,Antonio Figueiredo.融合多源信息的电动汽车充电负荷预测及其对配电网的影响[J].电力自动化设备,2018,38(12):1-10. CHEN Lidan,ZHANG Yao,FIGUEIREDO Antonio.Charging load forecasting of electric vehicles based on multi-source information fusion and its influence on distribution network[J].Electric Power Automation Equipment,2018,38(12):1-10.
    [32] 王浩林,张勇军,毛海鹏.基于时刻充电概率的电动汽车充电负荷预测方法[J].电力自动化设备,2019,39(3):207-213. WANG Haolin,ZHANG Yongjun,MAO Haipeng.Charging load forecasting method based on instantaneous charging probability for electric vehicles[J].Electric Power Automation Equipment,2019,39(3):207-213.
    [33] 张美霞,孙铨杰,杨秀.考虑多源信息实时交互和用户后悔心理的电动汽车充电负荷预测[J].电网技术,2022,46(2):632-645. ZHANG Meixia,SUN Quanjie,YANG Xiu.Electric vehicle charging load prediction considering multi-source information real-time interaction and user regret psychology[J].Power System Technology,2022,46(2):632-645.
    [34] 闫威,李南,沈月秀,等.基于CNN-GAN与半监督回归的电动汽车充电负荷预测[J].浙江电力,2023,42(2):83-89. YAN Wei,LI Nan,SHEN Yuexiu,et al.Electric vehicle charging load forecasting based on CNN-GAN and semi-supervised regression[J].Zhejiang Electric Power,2023,42(2):83-89.
    [35] 赵厚翔,沈晓东,吕林,等.基于GAN的负荷数据修复及其在EV短期负荷预测中的应用[J].电力系统自动化,2021,45(16):143-151. ZHAO Houxiang,SHEN Xiaodong,Lü Lin,et al.Load data restoration based on generative adversarial network and its application in short-term load foreacasting of electric vehicle[J].2021,45(16):143-151.
    相似文献
    引证文献
引用本文

庞松岭,赵雨楠,唐金锐,等.基于充电桩利用率的充电负荷超短期预测方法研究[J].电力科学与技术学报,2024,(1):115-123,133.
PANG Songling, ZHAO Yunan, TANG Jinrui, et al. A novel ultra short‑term charging load forecasting method based on usage degree of charging piles[J]. Journal of Electric Power Science and Technology,2024,(1):115-123,133.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2024-04-22
文章二维码