考虑电流瞬时频率特性的水上浮吊供电系统定时限过流保护方法
CSTR:
作者:
作者单位:

(1.国网湖南电动汽车服务有限公司,湖南 长沙 410082;2.长沙理工大学电气与信息工程学院,湖南 长沙 410114)

通讯作者:

王炜宇(1992—),男,博士,讲师,主要从事电力系统稳定与控制、继电保护研究;E-mail:WYWang@csust.edu.cn

中图分类号:

TM863

基金项目:

湖南省自然科学基金(2021JJ40598);湖南省教育厅科研项目(21B0325)


Definite‑time overcurrent protection scheme for floating crane supply system based on the instantaneous frequency characteristics of currents
Author:
Affiliation:

(1.State Grid Electric Vehicle Service Hunan Company, Changsha 410082, China; 2.School of Electrical & Information Engineering,Changsha University of Science & Technology, Changsha 410114, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • | | | |
  • 文章评论
    摘要:

    水上浮吊供电系统中,通常含有多台大功率异步电动机,多个电动机在并网启动时会产生较大的启动电流,当各电机启动电流叠加,可能导致变压器电流激增,触发过电流保护误动,给工业生产带来巨大损失。本文首先基于异步电动机等效模型,揭示了冲击电流的产生机理和箱式变压器保护误动原因;接着针对水上浮吊电机断续周期工作场景,提出了随机运行场景生成方法,基于希尔伯特黄变换技术,对系统的故障短路和电机启动状态下变压器的电流信号进行瞬时频率特性分析,揭示不同状态下箱式变压器电流的瞬时频率特性差异,在此基础上构建定时限过电流主动闭锁模块,确保浮吊供电系统正常工作时的可靠供电;最后通过湖南省某水上浮吊系统的仿真模型对所提出的保护方案进行了验证。

    Abstract:

    The floating crane supply system usually incorporates large-capacity multiple asynchronous motors. During the starting process of these motors, simultaneous activation can result in substantial current surges. Consequently, the transformer bears a heavy current burden, potentially triggering the false overcurrent protection and leading to further industrial production losses. This paper investigates a protection scheme for transformers supplying multiple high-capacity motors. Firstly, the mechanism of the overcurrent during motor starting is analyzed by an equivalent model. Subsequently, a random scenario generating algorithm is proposed to generate a large number of scenarios for analysis. Furthermore, the Hilbert-Huang transform technique is employed to examine the time-frequency domain characteristics of both fault current and normal current, leading to improvements in the conventional overcurrent protection scheme. Finally, The effectiveness of the proposed protection scheme is validated through a realistic floating crane supply project in Hunan province.

    参考文献
    [1] 武猛,林博.港口供电系统的主要特点[J].科技创新与应用,2015(32):183-184. WU Meng,LIN Bo.Main characteristics of port power supply system[J].Technology Innovation and Application,2015(32):183-184.
    [2] 周荔丹,许健,姚钢,等.船舶综合能源管理系统研究综述[J].电力系统保护与控制,2022,50(13):171-186. ZHOU Lidan,XU Jian,YAO Gang,et al.Review of integrated energy management systems for a marine microgrid[J].Power System Protection and Control,2022,50(13):171-186.
    [3] 孔令国,史立昊,石振宇,等.基于交替方向乘子法的园区电—氢—热系统低碳优化调度[J].电工技术学报,2023,38(11):2932-2944. KONG Lingguo,SHI Lihao,SHI Zhenyu,et al.Low-carbon optimal dispatch of electric-hydrogen-heat system in park based on alternating direction method of multipliers[J].Transactions of China Electrotechnical Society,2023,38(11):2932-2944.
    [4] 邱银锋,李国香,田浩,等.基于ADMM的海上多平台—岸电供能系统能量—备用协同分布式优化调度[J].电力建设,2023,44(1):21-29. QIU Yinfeng,LI Guoxiang,TIAN Hao,et al.Energy-reserve cooperative distributed optimal scheduling for offshore multi-platform and onshore power supply system based on ADMM[J].Electric Power Construction,2023,44(1):21-29.
    [5] 刘慧文,邢宏伟,房鑫炎,等.适用于岸电系统的逆功率及故障控制策略[J].电测与仪表,2023,60(12):159-164. LIU Huiwen,XING Hongwei,FANG Xinyan,et al.Reverse power and fault control strategy for shore power system[J].Electrical Measurement & Instrumentation,2023,60(12):159-164.
    [6] 贺岩松,杜钦君,赵正阳,等.三角形连接异步电动机分相投入策略研究[J].电网技术,2022,46(1):320-327. HE Yansong,DU Qinjun,ZHAO Zhengyang,et al.Research on phase separation input strategy of triangle connection asynchronous motor[J].Power System Technology,2022,46(1):320-327.
    [7] 郑玉平,潘书燕,柴济民,等.新一代调相机变压器组启机过流保护误动作原因及对策[J].电力系统自动化,2022,46(5):105-111. ZHENG Yuping,PAN Shuyan,CHAI Jimin,et al.Causes and countermeasures of misoperation for start-up over-current protection of new-generation condenser and transformer unit[J].Automation of Electric Power Systems,2022,46(5):105-111.
    [8] 刘仲钦.一起220 kV变电站主变励磁涌流引起的保护动作分析[J].机电信息,2021(23):32-34. LIU Zhongqin.Analysis of protection action caused by inrush current of main transformer in 220 kV substation[J].Mechanical and Electrical Information,2021(23):32-34.
    [9] 栗磊,赫嘉楠,熊军辉,等.基于波形分区重构的变压器励磁涌流与故障电流识别方法[J].电网与清洁能源,2023,39(2):16-23+32. LI Lei,HE Jianan,XIONG Junhui,et al.An identification method of inrush current and fault current based on waveform partition and reconstruction[J].Power System and Clean Energy,2023,39(2):16-23+32.
    [10] 杜继伟.变压器励磁涌流序分量特征分析[J].电力科学与工程,2022,38(4):63-70. DU Jiwei.Study on the characteristics of transformer inrush current sequence component[J].Electric Power Science and Engineering,2022,38(4):63-70.
    [11] 宋泽超,张浩,刘勇,等.某抽水蓄能电站主变压器低压闭锁过流保护动作原因分析及改造方案[J].水电与抽水蓄能,2021,7(1):49-52. SONG Zechao,ZHANG Hao,LIU Yong,et al.Analysis on the cause of overcurrent protection action of low-voltage lockout in a main transformer of pumped-storage hydroelectricity and its improvement scheme[J].Hydropower and Pumped Storage,2021,7(1):49-52.
    [12] 董新涛,李文伟,李宝伟,等.基于补偿零序压差原理的110 kV线路纵向故障保护方案[J].智慧电力,2022,50(9):110-117. DONG Xintao,LI Wenwei,LI Baowei,et al.110 kV line longitudinal fault protection scheme based on compensated zero sequence voltage differential principle[J].Smart Power,2022,50(9):110-117.
    [13] 李道胜.35 kV变压器空载充电时零序过流保护误动分析[J].冶金动力,2019,38(11):20-24.LI Daosheng.Analysis of zero sequence overcurrent protection misoperation during No-load charging of 35 kV transformer[J].Metallurgical Power,2019,38(11):20-24.
    [14] 刘林,王洪涛,鲁月娥.主变压器零序过流保护和间隙过流保护配合分析[J].东北电力技术,2020,41(8):37-40. LIU Lin,WANG Hongtao,LU Yuee.Analysis of coordination between zero-sequence over-current protection and gap protection of main transformer[J].Northeast Electric Power Technology,2020,41(8):37-40.
    [15] 赵黎丽,高昌培.500 kV自耦变压器零序过流保护的整定配合[J].电力系统自动化,2010,34(7):112-115. ZHAO Lili,GAO Changpei.Settings coordination of zero-sequence over-current relay for 500 kV autotransformer[J].Automation of Electric Power Systems,2010,34(7):112-115.
    [16] 吴昊天,赵阳,刘子卓,等.基于小波变换的配电变压器差动保护相位补偿方法[J].电力系统保护与控制,2022,50(10):76-83. WU Haotian,ZHAO Yang,LIU Zizhuo,et al.Phase compensation method of distribution transformer differential protection based on wavelet transform[J].Power System Protection and Control,2022,50(10):76-83.
    [17] 杨德昌,C.Rehtanz,李勇,等.基于改进希尔伯特—黄变换算法的电力系统低频振荡分析[J].中国电机工程学报,2011,31(10):102-108. YANG Dechang,C.REHTANZ,LI Yong,et al.Researching on low frequency oscillation in power system based on improved HHT algorithm[J].Proceedings of the CSEE,2011,31(10):102-108.
    [18] 李谦,江宇栋,刘尧,等.配电网低频涌流对电磁式电压互感器影响和抑制方法的分析[J].高压电器,2022,58(2):142-148+157. LI Qian,JIANG Yudong,LIU Yao,et al.Analysis of influence of low frequency inrush current of distribution network on electromagnetic potential transformer and its suppression method[J].High Voltage Apparatus,2022,58(2):142-148+157.
    [19] 樊昂,李录平,张世海,等.大型风电机组塔筒动力学特性与寿命损耗研究进展[J].发电技术,2022,43(3):421-430. FAN Ang,LI Luping,ZHANG Shihai,et al.A review on dynamic characteristics and life loss of large wind turbine towers[J].Power Generation Technology,2022,43(3):421-430.
    [20] 刘兴茂,何正友.基于希尔伯特—黄变换的输电线路距离保护方案[J].电力系统自动化,2013,37(2):108-112. LIU Xingmao,HE Zhengyou.Distance protection scheme for transmission lines based on Hilbert-Huang transform[J].Automation of Electric Power Systems,2013,37(2):108-112.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈 彬,朱盛开,唐 玮,等.考虑电流瞬时频率特性的水上浮吊供电系统定时限过流保护方法[J].电力科学与技术学报,2024,(1):144-154.
CHEN Bin, ZHU Shengkai, TANG Wei, et al. Definite‑time overcurrent protection scheme for floating crane supply system based on the instantaneous frequency characteristics of currents[J]. Journal of Electric Power Science and Technology,2024,(1):144-154.

复制
分享
文章指标
  • 点击次数:143
  • 下载次数: 476
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2024-04-22
文章二维码