一种基于CNN与FFT‑ELM的输电线路故障识别与定位方法
作者:
作者单位:

(1.国网河北省电力有限公司邯郸供电分公司,河北 邯郸 056002;2.河北硅谷研究院, 河北 邯郸 057151)

作者简介:

通讯作者:

郭 威(1996—),男,硕士,中级工程师,主要从事电网变电运维研究;E?mail:583370680@qq.com

中图分类号:

TM863

基金项目:

国网河北省电力有限公司科技项目(kj2021?042)


A method based on CNN and FFT‑ELM for fault identification and location of transmission lines
Author:
Affiliation:

(1.Handan Electric Power Supply Company, State Grid Hebei Electric Power Co., Ltd., Handan 056002,China;2.Hebei Silicon Valley Academy,Handan 057151,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    及时、准确地检测输电线路故障类型与位置是提高电力系统可靠性最重要的问题之一,为此提出一种基于卷积神经网络(convolutional neural networks, CNN)与基于快速傅里叶变换(fast Fourier transform,FFT)的极限学习机(extreme learning machine,ELM)分类模型并行的输电线路故障识别及定位方法。首先,以故障电压时序图作为输入,构建CNN;然后,利用FFT将时域故障电压数据分解,提取各频段的电压峰值与相角作为故障特征样本;接着,以提取的故障特征样本集作为输入,构建ELM网络;最后,通过特征融合层将2个神经网络进行融合,输出故障类型和定位结果。实验结果表明,此方法对输电线路故障识别的准确率为99.95%、故障定位误差在500 m以内、平均误差为263.5 m,可靠性优于其他模型。

    Abstract:

    It is one of the most important problems in power system reliability to detect the fault types and locations of transmission lines in time and accurately.Th is paper presents an approach for fault identification and location of transmission lines based on convolutional neural networks (CNN) paralled with extreme learning machine (ELM) based on fast Fourier transform (FFT). First, CNN is constructed with fault voltage sequence diagram as input. Then FFT is used to decompose the fault voltage data in time domain and extract the peak voltage and phase angle of each frequency band as fault feature samples. The ELM network is then constructed by taking the extracted fault feature sample set as input. Finally, the two neural networks are fused by the feature fusion layer to output the fault type and location results. Experimental results show that the accuracy of the method is 99.95%, the error of fault location is less than 500 m and the average error is 263.5 m; the reliability of the method is better than other models.

    参考文献
    相似文献
    引证文献
引用本文

裴东锋,刘 勇,闫柯柯,等.一种基于CNN与FFT‑ELM的输电线路故障识别与定位方法[J].电力科学与技术学报,2024,(1):164-170.
PEI Dongfeng, LIU Yong, YAN Keke, et al. A method based on CNN and FFT‑ELM for fault identification and location of transmission lines[J]. Journal of Electric Power Science and Technology,2024,(1):164-170.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-22
  • 出版日期:
文章二维码