一种基于CNN与FFT‑ELM的输电线路故障识别与定位方法
CSTR:
作者:
作者单位:

(1.国网河北省电力有限公司邯郸供电分公司,河北 邯郸 056002;2.河北硅谷研究院, 河北 邯郸 057151)

通讯作者:

郭 威(1996—),男,硕士,中级工程师,主要从事电网变电运维研究;E?mail:583370680@qq.com

中图分类号:

TM863

基金项目:

国网河北省电力有限公司科技项目(kj2021?042)


A method based on CNN and FFT‑ELM for fault identification and location of transmission lines
Author:
Affiliation:

(1.Handan Electric Power Supply Company, State Grid Hebei Electric Power Co., Ltd., Handan 056002,China;2.Hebei Silicon Valley Academy,Handan 057151,China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • | | | |
  • 文章评论
    摘要:

    及时、准确地检测输电线路故障类型与位置是提高电力系统可靠性最重要的问题之一,为此提出一种基于卷积神经网络(convolutional neural networks, CNN)与基于快速傅里叶变换(fast Fourier transform,FFT)的极限学习机(extreme learning machine,ELM)分类模型并行的输电线路故障识别及定位方法。首先,以故障电压时序图作为输入,构建CNN;然后,利用FFT将时域故障电压数据分解,提取各频段的电压峰值与相角作为故障特征样本;接着,以提取的故障特征样本集作为输入,构建ELM网络;最后,通过特征融合层将2个神经网络进行融合,输出故障类型和定位结果。实验结果表明,此方法对输电线路故障识别的准确率为99.95%、故障定位误差在500 m以内、平均误差为263.5 m,可靠性优于其他模型。

    Abstract:

    It is one of the most important problems in power system reliability to detect the fault types and locations of transmission lines in time and accurately.Th is paper presents an approach for fault identification and location of transmission lines based on convolutional neural networks (CNN) paralled with extreme learning machine (ELM) based on fast Fourier transform (FFT). First, CNN is constructed with fault voltage sequence diagram as input. Then FFT is used to decompose the fault voltage data in time domain and extract the peak voltage and phase angle of each frequency band as fault feature samples. The ELM network is then constructed by taking the extracted fault feature sample set as input. Finally, the two neural networks are fused by the feature fusion layer to output the fault type and location results. Experimental results show that the accuracy of the method is 99.95%, the error of fault location is less than 500 m and the average error is 263.5 m; the reliability of the method is better than other models.

    参考文献
    [1] 周劼英,张晓,邵立嵩,等.面向高比例新能源的新型电力系统网络安全防护挑战与展望[J/OL].电力系统自动化:1-10[2023-03-14].http://kns.cnki.net/kcms/detail/32.1180.TP.20230310.1123.002.html. ZHOU Jieying, ZHANG Xiao, SHAO Lisong,et al. Challenges and prospects for cyber security protection of a new power system facing high proportion of new energy[J/OL]. Automation of Electric Power Systems:1-10[2023-03-14].http://kns.cnki.net/kcms/ detail/ 32.1180.TP.20230310.1123.002.html.
    [2] 夏中原,李威,兰光宇,等.某220 kV GIS母线跳闸故障分析与处理[J].高压电器,2023,59(6):223-228. XIA Zhongyuan,LI Wei,LAN Guangyu,et al.Analysis and treatment on busbar trip of 220 kV GIS[J].High Voltage Apparatus,2023,59(6):223-228.
    [3] 佘建宁,江波,唐玲,等.一种三芯电缆状态在线监测与短路故障定位方法的研究[J].智慧电力,2023,51(11):91-97+105. SHE Jianning,JIANG Bo,TANG Ling,et al.Method for on-line monitoring and short-circuit fault location of three-core cables[J].Smart Power,2023,51(11):91-97+105.
    [4] 王尧,马桐桐,赵宇初,等.基于电磁辐射时延估计的串联光伏直流电弧故障定位方法[J].电工技术学报,2023,38(8):2233-2243. WANG Yao,MA Tongtong,ZHAO Yuchu,et al.Series DC arc-fault location method based on electromagnetic radiation delay estimation for photovoltaic systems[J].Transactions of China Electrotechnical Society,2023,38(8):2233-2243.
    [5] 陈晓龙,余联课,裴东锋,等.一种基于故障支路判定和迭代计算的单回T型输电线路故障测距新方法[J].电力系统保护与控制,2022,50(20):1-11. CHEN Xiaolong,YU Lianke,PEI Dongfeng,et al.A new fault location method for single-circuit three-terminal transmission lines based on fault branch determination and iterative calculation[J].Power System Protection and Control,2022,50(20):1-11.
    [6] 陈池瑶,苗世洪,殷浩然,等.基于注意力机制-卷积神经网络的配电网单相接地故障选线方法[J].电力建设,2023,44(4):82-93. CHEN Chiyao,MIAO Shihong,YIN Haoran,et al.Single-phase grounding-fault line selection method based on attention mechanism-convolution neural network for distribution network[J].Electric Power Construction,2023,44(4):82-93.
    [7] 刘健,张志华,张小庆.中性点非有效接地系统单相接地故障处理新技术[J].供用电,2022,39(5):48-53. LIU Jian,ZHANG Zhihua,ZHANG Xiaoqing.New technology of single-phase grounding fault processing in neutral non-effectively grounded systems[J].Distribution & Utilization,2022,39(5):48-53.
    [8] 廖名洋,张文,袁海,等.基于多脉冲注入法的高压直流输电接地极线路故障测距[J].电网与清洁能源,2022,38(9):98-104+111. LIAO Mingyang,ZHANG Wen,YUAN Hai,et al.A fault location method for HVDC grounding pole line using multi-pulse injection method[J].Power System and Clean Energy,2022,38(9):98-104+111.
    [9] WU H,WANG J,NAN D L,et al.Transmission line fault cause identification method based on transient waveform image and MCNN-LSTM[J].Measurement,2023,220:113422.
    [10] LIU H W,YANG Q,TANG L J,et al.Fault type identification of arc grounding based on time-frequency domain characteristics of zero sequence current[J].Electric Power Systems Research,2023,223:109689.
    [11] 刘志远,于晓军,罗美玲,等.基于CBAM-FCN的高压输电线路发展性故障识别方法[J].电网与清洁能源,2022,38(9):25-33+44. LIU Zhiyuan,YU Xiaojun,LUO Meiling,et al.An evolved faults identification method of HV transmission lines based on CBAM-FCN[J].Power System and Clean Energy,2022,38(9):25-33+44.
    [12] FAHIM S R,MUYEEN S M,MANNAN M A,et al.Uncertainty awareness in transmission line fault analysis:a deep learning based approach[J].Applied Soft Computing,2022,128:109437.
    [13] 王鑫明,王祥宇,贾晓卜,等.基于小波包分解卷积神经网络的停运输电线路故障识别方法[J/OL].电测与仪表,2022:1-7(2022-06-23).https://kns.cnki.net/kcms/detail/23.1202.TH.20220622.1456.008.html. WANG Xinming,WANG Xiangyu,JIA Xiaobo,et al.Fault identification method of outage transmission line based on convolutional neural network and wavelet packet decomposition[J/OL].Electrical Measurement & Instrumentation,2022:1-7(2022-06-23).https://kns.cnki.net/kcms/detail/23.1202.TH.20220622.1456.008.html.
    [14] AKMAZ D,MAMICS M S,ARKAN M,et al.Transmission line fault location using traveling wave frequencies and extreme learning machine[J].Electric Power Systems Research,2018,155:1-7.
    [15] BIKASH P.Superimposed components of Lissajous pattern based feature extraction for classification and localization of transmission line faults[J].Electric Power Systems Research,2022,215:1-12.
    [16] 赵国亮,陈维江,邓占锋,等.柔性低频交流输电关键技术及应用[J].电力系统自动化,2022,46(15):1-10. ZHAO Guoliang,CHEN Weijiang,DENG Zhanfeng,et al.Key technologies and application of flexible low-frequency AC transmission[J].Automation of Electric Power Systems,2022,46(15):1-10.
    [17] 吕鹏飞.交直流混联电网下直流输电系统运行面临的挑战及对策[J].电网技术,2022,46(2):503-510. Lü Pengfei.Research on HVDC operation characteristics under influence of hybrid AC/DC power grids[J].Power System Technology,2022,46(2):503-510.
    [18] 王彦彪,陈振勇,郭文萍,等.基于双注意力机制优化CNN架构的GIS局部放电模式识别[J].电力科学与技术学报,2022,37(2):22-29. WANG Yanbiao,CHEN Zhenyong,GUO Wenping,et al.PD pattern recognition for GIS based on CNN architecture optimized by the double attention mechanism[J].Journal of Electric Power Science and Technology,2022,37(2):22-29.
    [19] 杜太行,陈培颖,弭艳芝,等.基于FFT算法的交流电器选相分合闸技术[J].电工技术学报,2003,18(6):80-83+87. DU Taihang,CHEN Peiying,MI Yanzhi,et al.Technology of phase selection of AC apparatus based on FFT[J].Transactions of China Electrotechnical Society,2003,18(6):80-83+87.
    [20] 龙干,黄媚,方力谦,等.基于改进多元宇宙算法优化ELM的短期电力负荷预测[J].电力系统保护与控制,2022,50(19):99-106. LONG Gan,HUANG Mei,FANG Liqian,et al.Short-term power load forecasting based on an improved multi-verse optimizer algorithm optimized extreme learning machine[J].Power System Protection and Control,2022,50(19):99-106.
    [21] YE Q,LIU S H,LIU C H.A deep learning model for fault diagnosis with a deep neural network and feature fusion on multi-channel sensory signals[J].Sensors,2020,20(15):4300.
    [22] 田鹏飞,于游,董明,等.基于CNN-SVM的高压输电线路故障识别方法[J].电力系统保护与控制,2022,50(13):119-125. TIAN Pengfei,YU You,DONG Ming,et al.A CNN-SVM-based fault identification method for high-voltage transmission lines[J].Power System Protection and Control,2022,50(13):119-125.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

裴东锋,刘 勇,闫柯柯,等.一种基于CNN与FFT‑ELM的输电线路故障识别与定位方法[J].电力科学与技术学报,2024,(1):164-170.
PEI Dongfeng, LIU Yong, YAN Keke, et al. A method based on CNN and FFT‑ELM for fault identification and location of transmission lines[J]. Journal of Electric Power Science and Technology,2024,(1):164-170.

复制
分享
文章指标
  • 点击次数:230
  • 下载次数: 681
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2024-04-22
文章二维码