基于DCM‑PCA和GA‑BP的逆变器故障诊断
作者:
作者单位:

(三峡大学电气与新能源学院,湖北 宜昌 443000)

作者简介:

通讯作者:

程 煜(1998—),女,硕士研究生,主要从事电力电子的故障诊断方面的研究;E?mail:1670914197@qq.com

中图分类号:

TM464

基金项目:

湖北省自然科学基金(2019CFB331)


Fault diagnosis of inverter based on DCM‑PCA and GA‑BP neural network
Author:
Affiliation:

(College of Electrical Engineering and New Energy,China Three Gorges University, Yichang 443000, Chain)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对光伏并网三相电压型逆变器开关管的开路故障,提出深度级联模型(deep cascade mode,DCM)?主成分分析(principal component analysis,PCA)与遗传算法(genetic algorithm,GA)优化的BP神经网络结合的故障诊断方法。首先对逆变器的开路故障进行分析和仿真,确定三相电流作为故障信号,选择22类故障状态作为诊断对象,通过以稀疏表示分类(sparse representation based classififier,SRC)为基本操作单元的深度级联模型提取故障特征,DCM根据层次学习特性将故障特征分层,再由SRC部分得到不同故障的编码系数,并采用t分布—随机近邻嵌入(t?distributed stochastic neighbor embedding,t?SNE)方法验证了DCM具有较好的特征提取能力,通过PCA降低故障特征的冗余度、保留有价值的主成分提高网络映射能力,最后将故障特征向量作为GA?BP神经网络的输入信号实现对故障的诊断识别。通过仿真实验得到该方法的故障诊断准确率为95.64%,与DCM?PCA?BP、FFT?GA?BP和FFT?BP相比准确率分别提高8.71%、20.64%、51.70%,表明该方法有更好的故障特征提取能力和故障诊断效果。

    Abstract:

    Aiming at the open-circuit fault of the photovoltaic grid-connected three-phase voltage-type inverter,.a fault diagnosis method combining deep cascade mode-principal component analysis (DCM-PCA) and genetic algorithm-optimized BP(GA-BP) neural network is proposed. Firstly, the open-circuit fault of the inverter is analyzed and simulated, the three-phase current is determined as the fault signal, and 22 types of fault states are selected as the diagnosis objects, and the fault features are extracted through the deep cascade model with sparse representation classification as the basic operation unit, the DCM fault features are stratified based on the characteristics of hierarchical learning. The t-SNE method is used to verify that DCM has good feature extraction ability. PCA is used to reduce the redundancy of fault features, retain valuable principal components to improve the network mapping ability. Finally, the fault feature vector is used as the input of the GA-BP neural network to identify the fault and output the diagnosis result. The fault diagnosis accuracy of this method is 95.64% through simulation and experiments, compared with the DCM-PCA-BP, FFT-GA-BP and FFT-BP, the accuracy is increased by 8.71%, 20.64% and 51.70% respectively, indicating that the proposed method has better fault feature extraction capability and better fault diagnosis performance.

    参考文献
    相似文献
    引证文献
引用本文

黄敬尧,程 煜,李雅恬.基于DCM‑PCA和GA‑BP的逆变器故障诊断[J].电力科学与技术学报,2024,(1):260-271.
HUANG Jingyao, CHENG Yu, LI Yatian. Fault diagnosis of inverter based on DCM‑PCA and GA‑BP neural network[J]. Journal of Electric Power Science and Technology,2024,(1):260-271.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-22
  • 出版日期:
文章二维码