一种基于改进VMD‑PSO‑CNN‑LSTM的短期电价预测方法
CSTR:
作者:
作者单位:

(1.国网河南省电力公司南阳供电公司,河南 南阳 473000;2.中国电信股份有限公司湖北智能云网调度运营中心,湖北 武汉 430022;3.武汉大学电气与自动化学院,湖北 武汉 430072)

通讯作者:

华大鹏(1973—),男,正高级工程师,主要从事电力系统规划和投资管理研究;E?mail:zyhu1980@163.com

中图分类号:

TM732

基金项目:

国家自然科学基金(51977160);国网河南省电力公司科技项目(SGHANY00CTJS220475)


A short‑term electricity price forecasting method based on improved VMD‑PSO‑CNN‑LSTM
Author:
Affiliation:

(1.Nanyang Power Supply Company,State Grid Henan Electric Power Company,Nanyang 473000,China; 2.Hubei Intelligent Cloud Network Dispatching and Operation Center,China Telecom,Wuhan 430022,China; 3.School of Electrical Engineering and Automation,Wuhan University, Wuhan 430072,China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • | | | |
  • 文章评论
    摘要:

    为了提升电价预测的准确性和预测模型的稳定性,提出一种基于改进VMD?PSO?CNN?LSTM的短期电价预测方法。首先,通过研究变分模态分解(variational mode decomposition,VMD)与电价影响因素的相关影响程度,并引入最大信息系数(MIC)构建VMD参数优化模型;然后,利用卷积神经网络(convolutional neural networks,CNN)与长短期记忆(long short?term memory,LSTM)神经网络对VMD分解得到的各模态分量进行预测。同时,根据深度可分离卷积结合电价时间规律,在CNN卷积部分构建多尺度的卷积特征提取结构,并利用粒子群优化算法优化包括CNN卷积层数量、CNN卷积神经元数量、LSTM隐藏层数量、LSTM记忆时间以及全连接层数等在内的参数,从而实现模型预测准确性和稳定性的提升。最后,对澳洲电力市场日前电价进行分析预测并与对照算法对比,结果表明该文算法具有更高的精度和更好的稳定性。

    Abstract:

    To improve the accuracy of electricity price forecasting and the stability of forecasting models, a short-term electricity price forecasting method based on improved VMD-PSO-CNN-LSTM is proposed. Firstly, after studying the correlation between variational mode decomposition(VMD) and the influencing factors of electricity prices, and introducing the maximum information coefficient, a parameter optimization model for VMD is constructed. Secondly, convolutional neural networks(CNN) and long short-term memory(LSTM) neural networks are used to predict the modal components obtained by VMD decomposition. As for the convolution in CNN, a extraction structure with multi-scale convolution feature is constructed, on the basis of the depth-wise separable convolution combined with the time law of electricity prices. Particle swarm optimization algorithm is then used to optimize parameters including the number of CNN convolutional layers, the number of CNN convolutional neurons, the number of LSTM hidden layers, LSTM memory time, and the number of fully connected layers, so as to improve the prediction accuracy and stability of the model. Finally, the analysis and prediction of the day-ahead electricity prices in the Australian electricity market are carried out and compared with the algorithm. The results show that the proposed algorithm has higher accuracy and better stability.

    参考文献
    [1] 徐浩,姜新雄,刘志成,等.基于概率预测的电网静态安全运行风险评估及主动调控策略[J].电力系统自动化,2022,46(1):182-191. XU Hao,JIANG Xinxiong,LIU Zhicheng,et al.Risk assessment and active regulation strategy for static safety operation of power grids based on probability prediction[J].Automation of Electric Power Systems,2022,46(1):182-191.
    [2] 张健,张钦,黄晓艳,等.基于加速退化数据和现场实测退化数据的电机绝缘剩余寿命预测模型[J].电工技术学报,2023,38(3):599-609. ZHANG Jian,ZHANG Qin,HUANG Xiaoyan,et al.A prediction model for the remaining life of motor insulation based on accelerated degradation data and on-site measured degradation data[J].Transactions of China Electrotechnical Society,2023,38(3):599-609.
    [3] 王文婷,安爱民,保承家,等.基于改进代价敏感直推式支持向量机的发电企业滥用市场力识别[J].电力系统保护与控制,2022,50(11):102-111. WANG Wenting,AN Aimin,BAO Chengjia,et al.Identification of abuse of market power in power generation enterprises based on improved cost sensitive direct push support vector machine[J].Power System Protection and Control,2022,50(11):102-111.
    [4] 崔瑶,裴培,黄鑫,等.基于混合深度学习的调度数据网流量预测技术研究[J].供用电,2023,40(5):53-60. CUI Yao,PEI Pei,HUANG Xin,et al.Research on traffic prediction technology of dispatching data network based on a hybrid deep learning algorithm[J].Distribution & Utilization,2023,40(5):53-60.
    [5] 闫红艳,Hwang Jin Kwon,高艳丰.基于类噪声数据的电力系统低频振荡模态参数辨识[J].发电技术,2022,43(1):19-31. YAN Hongyan,Hwang Jin Kwon,GAO Yanfeng.Identification of low-frequency oscillation modal parameters in power systems based on class noise data[J].Power Generation Technology,2022,43(1):19-31.
    [6] 孙浩,万灿,曹照静,等.基于条件生成对抗网络曲线生成的短期负荷概率预测[J].电力系统自动化,2023,47(23):189-199. SUN Hao,WAN Can,CAO Zhaojing,et al.Short-term load probabilistic forecasting based on conditional generative adversarial network curve generation[J] Automation of Electric Power Systems,2023,47(23):189-199.
    [7] AL-MUSAYLH M S,DEO R C,ADAMOWSKI J F,et al.Short-term electricity demand forecasting with MARS,SVR and ARIMA models using aggregated demand data in Queensland Australia[J].Advanced Engineering Informatics,2018,35:1-16.
    [8] HUA Z Q,XUE D M.ARIMA based time series forecasting model[J].Recent Advances in Electrical & Electronic Engineering,2016,9(2):93-98.
    [9] 罗凤章,张旭,杨欣,等.基于深度学习的综合能源配电系统负荷分析预测[J].高电压技术,2021,47(1):23-32. LUO Fengzhang,ZHANG Xu,YANG Xin,et al.Load analysis and prediction of integrated energy distribution system based on deep learning[J].High Voltage Engineering,2021,47(1):23-32.
    [10] CHANG Z,ZHANG Y,CHEN W.Effective adam-optimized LSTM neural network for electricity price forecasting[C]//IEEE 9th International Conference on Software Engineering and Service Sciences(ICSESS),Beijing,China,2018.
    [11] 罗家林,陈超,黄梅,等.弱电网矿区下构网型储能控制技术研究[J].高压电器,2023,59(7):95-103. LUO Jialin,CHEN Chao,HUANG Mei,et al.Research on energy storage control technology for underneath construction of weak current grid mining area[J].High Voltage Apparatus,2023,59(7):95-103.
    [12] 陈先昌.基于卷积神经网络的深度学习算法与应用研究[D].杭州:浙江工商大学,2014. CHEN Xianchang. Research on algorithm and application of deep learning based on convolutional neural network[D].Hangzhou:Zhejiang Gongshang University,2014.
    [13] 朱继忠,苗雨旺,董朝阳,等.基于Attention-LSTM与多模型集成的短期负荷预测方法[J].电力工程技术,2023,42(5):138-147. ZHU Jizhong,MIAO Yuwang,DONG Chaoyang,et al.Short term load forecasting method based on Attention-LSTM and multi model integration[J].Electric Power Engineering Technology,2023,42(5):138-147.
    [14] ZHENG J,XU C,ZHANG Z,et al.Electric load forecasting in smart grids using long-short-term-memory based recurrent neural network[J].51st Annual Conference on Information Sciences and Systems(CISS),Baltimore,MD,USA,2017.
    [15] 张运洲,陈宁,黄碧斌,等.基于系统成本的新能源等效上网电价计算方法及应用[J].中国电力,2022,55(2):1-8. ZHANG Yunzhou,CHEN Ning,HUANG Bibin,et al.Calculation method and application of equivalent grid electricity price for new energy based on system cost[J].Electric Power,2022,55(2):1-8.
    [16] 葛晓琳,居兴,王定美.考虑需求响应不确定性的主动配电网优化调度[J].电测与仪表,2023,60(1):104-110. GE Xiaolin,JU Xing,WANG Dingmei.Active distribution network optimization scheduling considering demand response uncertainty[J] Electrical Measurement & Instrumentation,2023,60(1):104-110.
    [17] 包苑村,解建仓,罗军刚.基于VMD-CNN-LSTM模型的渭河流域月径流预测[J].西安理工大学学报,2021,37(1):1-8. BAO Yuancun,XIE Jiancang,LUO Jungang.Monthly runoff prediction of Weihe river basin based on VMD-CNN-LSTM model[J].Journal of Xi'an University of Technology,2021,37(1):1-8.
    [18] 赵雅雪,王旭,蒋传文,等.基于最大信息系数相关性分析和改进多层级门控LSTM的短期电价预测方法[J].中国电机工程学报,2021,41(1):135-146+404. ZHAO Yaxue,WANG Xu,JIANG Chuanwen,et al.A novel short-term electricity price forecasting method based on correlation analysis with the maximal information coefficient and modified multi-hierachy gated LSTM[J].Proceedings of the CSEE,2021,41(1):135-146+404.
    [19] 韩升科,胡飞虎,陈之腾,等.基于GCN-LSTM的日前市场边际电价预测[J].中国电机工程学报,2022,42(09):3276-3286. HAN Shengke,HU Feihu,CHEN Zhiteng,et al.Advance market marginal electricity price forecast based on GCN-LSTM[J].Proceedings of the CSEE,2022,42(9):3276-3286.
    [20] 廖雪超,陈才圣,伍杰平.基于CNN-LSTM及深度学习的风电场时空组合预测模型[J].信息与控制,2022,51(4):498-512. LIAO Xuechao,CHEN Caisheng,WU Jieping.Space-time Combined spatiotemporal wind farm prediction model based on CNN-LSTM and deep learning[J].Information and Control,2022,51(4):498-512.
    [21] 陈海鹏,周越豪,王趁录,等.基于改进的CNN-LSTM短期风功率预测的系统旋转备用经济性分析[J].高电压技术,2022,48(2):439-448. CHEN Haipeng,ZHOU Yuehao,WANG Chenlu,et al.Economic analysis of system spinning reserve based on improved CNN-LSTM short-term wind power prediction[J].High Voltage Technology,2022,48(2):439-448.
    [22] 赵佩,代业明.基于实时电价和加权灰色关联投影的SVM电力负荷预测[J].电网技术,2020,44(4):1325-1332. ZHAO Pei,DAI Yeming.Power load forecasting of SVM based on real-time price and weighted grey relational projection algorithm[J].Power System Technology,2020,44(4):1325-1332.
    [23] 朱凌建,荀子涵,王裕鑫,等.基于CNN-BiLSTM的短期电力负荷预测[J].电网技术,2021,45(11):4532-4539. ZHU Lingjian,XUN Zihan,WANG Yuxin,et al.Short-term power load forecasting based on CNN-BiLSTM[J].Power System Technology,2021,45(11):4532-4539.
    [24] 袁建华,谢斌斌,何宝林,等.基于DTW-VMD-PSO-BP的光伏发电功率短期预测方法[J].太阳能学报,2022,43(8):58-66. YUAN Jianhua,XIE Binbin,HE Baolin,et al.Short-term forecasting method of photovoltaic output based on DTW-VMD-PSO-BP[J].Acta Energiae Solaris Sinica,2022,43(8):58-66.
    [25] 孙广路,宋智超,刘金来,等.基于最大信息系数和近似马尔科夫链的特征选择方法[J].自动化学报,2017,43(5):795-805. SUN Guanglu,SONG Zhichao,LIU Jinlai,et al.Feature selection method based on maximum information coefficient and approximate Markov blanket[J].Acta Automation Sinica,2017,43(5):795-805.
    [26] 殷豪,丁伟锋,陈顺,等.基于长短时记忆网络—纵横交叉算法的含高比例新能源电力市场日前电价预测[J].电网技术,2022,46(2):472-480. YIN Hao,DING Weifeng,CHEN Shun,et al.Day-ahead electricity price forecasting of electricity market with high proportion of new energy based on LSTM-CSO model[J].Power System Technology,2022,46(2):472-480.
    [27] CHOLLET F.Xception:deep learning with depthwise separable convolutions[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR),Honolulu,HI,USA,2017.
    [28] 温露露.能源互联网环境下基于负荷特征的需求响应策略研究[D].合肥:合肥工业大学,2021. WEN Lulu.Research on demand response strategy based on load characteristics in the environment of energy Internet[D].Hefei:Hefei University of Technology,2021.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郭雪丽,华大鹏,包鹏宇,等.一种基于改进VMD‑PSO‑CNN‑LSTM的短期电价预测方法[J].电力科学与技术学报,2024,39(2):35-43.
GUO Xueli, HUA Dapeng, BAO Pengyu, et al. A short‑term electricity price forecasting method based on improved VMD‑PSO‑CNN‑LSTM[J]. Journal of Electric Power Science and Technology,2024,39(2):35-43.

复制
分享
文章指标
  • 点击次数:549
  • 下载次数: 1256
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2024-05-29
文章二维码