改进MOGOA及其在风储容量优化配置中的应用
CSTR:
作者:
作者单位:

(湖南工业大学电气与信息工程学院,湖南 株洲 412007)

通讯作者:

秦 斌(1963—),男,博士,教授,主要从事复杂系统测控技术及应用研究;E?mail:qinbin99p@163.com

中图分类号:

TM715,TP18

基金项目:

国家自然科学基金(62033014);湖南省自然科学基金(2021JJ50006;2022JJ50074)


Improved multi‑objective grasshopper algorithm applied in optimal capacity allocation of energy storage system in wind farms
Author:
Affiliation:

(College of Electrical and Information Engineering, Hunan University of Technology,Zhuzhou 412007,China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • | | | |
  • 文章评论
    摘要:

    针对传统方法在风储容量优化配置过程中求解精度低、效率低等问题,提出一种改进多目标蝗虫优化算法(improved multi?objective grasshopper optimization algorithm,IMOGOA),采用Fuch混沌映射、余弦自适应参数和莱维飞行三种策略进行改进,使算法的初始解分布更均匀、全局探索和局部开发更协调,同时增强了算法跳出局部最优的能力。对改进算法和多目标粒子群等多个算法进行性能测试对比,实验结果表明改进算法具有更好的寻优精度和稳定性。将该算法应用于风电场混合储能系统容量优化配置,对比其他算法,改进算法能够快速找出Pareto最优解集,在满足系统要求的同时,最大限度降低混合储能系统成本,可以验证算法改进策略的有效性和应用于实际优化问题的适用性。

    Abstract:

    Aiming at the problems of low solution accuracy and efficiency in the optimal capacity allocation of energy storage system in wind farms with traditional methods, an improved multi-objective grasshopper optimization algorithm (IMOGOA) is proposed. Three strategies including Fuch chaos mapping, cosine adaptive parameters, and Levy flight are adopted for improvement, which makes the initial solution distribution of the algorithm more uniform, global exploration and local development more coordinated, and enhances the ability for algorithm to jump out of the local optimum. Performance tests are conducted to compare the improved algorithm with multiple algorithms such as multi-objective particle swarm optimization and et al. Experimental results show that the improved algorithm has better optimization accuracy and stability. When applied to the optimal capacity allocation for hybrid energy storage system in wind farms, compared with other algorithms, the improved algorithm can quickly find the Pareto optimal solution set. While meeting the system requirements, it minimizes the cost of the hybrid energy storage system, which verifies the effectiveness of the algorithm on improving strategy and its applicability to practical optimization problems.

    参考文献
    [1] 刘明,曾成碧,苗虹.考虑风电不确定性的分布鲁棒机会约束机组组合模型[J].电力科学与技术学报,2021,36(2):51-57. LIU Ming,ZENG Chengbi,MIAO Hong.Distributionally robust chance-constrained unit commitment model considering uncertainty of wind power[J].Journal of Electric Power Science and Technology,2021,36(2):51-57.
    [2] 吴志鹏,裴建华,李银红.基于低电压穿越功率特性的双馈风电场多机等值方法[J].电力系统自动化,2022,46(19):95-103. WU Zhipeng,PEI Jianhua,LI Yinhong.Multi-machine equivalent method for dfig-based wind farm based on power characteristic of low voltage ride-through[J].Automation of Electric Power Systems,2022,46(19):95-103.
    [3] 王彦虹,邰能灵,嵇康.含大规模风光电源的配电网储能电池选址定容优化方案[J].电力科学与技术学报,2017,32(2):23-30. WANG Yanhong,TAI Nengling,JI Kang.Optimal battery storage allocation in distributed network with large-scale of wind and photovoltaic generation[J].Journal of Electric Power Science and Technology,2017,32(2):23-30.
    [4] 李诗颖,杨晓辉.基于双向动态重构与集群划分的光伏储能选址定容[J].电力系统保护与控制,2022,50(3):51-58. LI Shiying,YANG Xiaohui.Capacity and location optimization of photovoltaic and energy storage based on bidirectional dynamic reconfiguration and cluster division[J].Power System Protection and Control,2022,50(3):51-58.
    [5] 郭玲娟,魏斌,韩肖清,等.基于集合经验模态分解的交直流混合微电网混合储能容量优化配置[J].高电压技术,2020,46(2):527-537. GUO Lingjuan,WEI Bin,HAN Xiaoqing,et al.Capacity optimal configuration of hybrid energy storage in hybrid AC/DC micro-grid based on ensemble empirical mode decomposition[J].High Voltage Engineering,2020,46(2):527-537.
    [6] 丁明,吴杰,张晶晶.面向风电平抑的混合储能系统容量配置方法[J].太阳能学报,2019,40(3):593-599. DING Ming,WU Jie,ZHANG Jingjing.Capacity optimization method of hybrid energy storage system for wind power smoothing[J].Acta Energiae Solaris Sinica,2019,40(03):593-599.
    [7] 张梦田,田书,曾志辉.基于变分模态分解的混合储能容量优化配置[J].储能科学与技术,2020,9(1):170-177. ZHANG Mengtian,TIAN Shu,ZENG Zhihui.Optimal allocation of hybrid energy storage capacity based on variational mode decomposition[J].Energy Storage Science and Technology,2020,9(1):170-177.
    [8] 李勇,姚天宇,乔学博,等.基于联合时序场景和源网荷协同的分布式光伏与储能优化配置[J].电工技术学报,2022,37(13):3289-3303. LI Yong,YAO Tianyu,QIAO Xuebo,et al.Optimal configuration of distributed photovoltaic and energy storage system based on joint sequential scenario and source-network-load coordination[J].Transactions of China Electrotechnical Society,2022,37(13):3289-3303.
    [9] 夏新茂,关洪浩,丁鹏飞,等.基于改进型量子遗传算法的储能系统容量配置与优化策略[J].储能科学与技术,2019,8(3):551-558. XIA Xinmao,GUAN Honghao,DING Pengfei,et al.Capacity allocation and optimization strategy of an energy storage system based on an improved quantum genetic algorithm[J].Energy Storage Science and Technology,2019,8(3):551-558.
    [10] 张伟骏,李智诚,陈大玮,等.配网侧分布式储能系统的随机优化配置和选址方法[J].高压电器,2023,59(7):125-135. ZHANG Weijun,LI Zhicheng,CHEN Dawei,et al.Stochastic optimal configuration and site selection method of grid-side distributed energy storage system[J].High Voltage Apparatus,2023,59(7):125-135.
    [11] 李世泽,高素萍,郭朝江.混合储能多目标容量优化配置[J].电源学报,2018,16(4):174-180. LI Shize,GAO Suping,GUO Chaojiang.Multi-objective optimal capacity allocation of hybrid energy storage[J].Journal of Power Supply,2018,16(4):174-180.
    [12] 陈晓光,杨秀媛,王镇林,等.考虑多目标优化模型的风电场储能容量配置方案[J].发电技术,2022,43(5):718-730. CHEN Xiaoguang,YANG Xiuyuan,WANG Zhenlin,et al.Energy storage capacity allocation scheme ofwind farm considering multi-objective optimization model[J].Power Generation Technology,2022,43(5):718-730.
    [13] PAYAM T B,MAHDI S,MOHSEN P M,et al.Energy management and operation modelling of hybrid AC-DC microgrid[J].IET Generation,Transmission and Distribution,2014,8(10):1700-1711.
    [14] MIRJALILI S Z,MIRJALILI S,SAREMI S,et al.Grasshopper optimization algorithm for multi-objective optimization problems[J].Applied Intelligence,2018,48(4):805-820.
    [15] 马锋,高明亮,许崇耀,等.基于仿真优化智能变电站巡检机器人路径研究[J].电测与仪表,2023,60(9):14-20. MA Feng,GAO Mingliang,XU Chongyao,et al.Research on path of intelligent substation inspection robot based on simulation optimization[J].Electrical Measurement & Instrumentation,2023,60(9):14-20.
    [16] 陈涛,李由之,黄湘松.基于改进MOGOA的无人机群航迹规划研究[J].天津大学学报(自然科学与工程技术版),2020,53(9):967-975. CHEN Tao,LI Youzhi,HUANG Xiangsong.UAVs path planning based on improved multi-objective grasshopper optimization algorithm[J].Journal of Tianjin University(Science and Technology),2020,53(9):967-975.
    [17] 孙绳山,徐常凯,阎薪宇.基于多目标蝗虫算法的航材分配模型[J].包装工程,2021,42(21):266-270. SUN Shenshan,XU Changkai,YAN Xinyu.Allocation model of air materials based on multi-objective grasshopper optimization algorithm[J].Packaging Engineering,2021,42(21):266-270.
    [18] GAMPA S R,JASTHI K,GOLI P,et al.Grasshopper optimization algorithm based two stage fuzzy multiobjective approach for optimum sizing and placement of distributed generations,shunt capacitors and electric vehicle charging stations[J].Journal of Energy Storage,2020,27:101117.
    [19] 邵鸿南,梁倩,王李森,等.基于反向学习和种群引导的多目标蝗虫优化算法[J].计算机工程与科学,2021,43(5):944-950. SHAO Hongnan,LIANG Qian,WANG Lisen,et al.A multi-objective grasshopper optimization algorithm based on opposition-based learning and population guidance[J].Computer Engineering and Science,2021,43(5):944-950.
    [20] 王博,刘连生,韩绍程,等.基于多策略融合的混合多目标蝗虫优化算法[J].计算机应用,2020,40(9):2670-2676. WANG Bo,LIU Liansheng,HAN Shaocheng,et al.Hybrid multi-objective grasshopper optimization algorithm based on fusion of multiple strategies[J].Journal of Computer Applications,2020,40(9):2670-2676.
    [21] 傅文渊,凌朝东.自适应折叠混沌优化方法[J].西安交通大学学报,2013,47(2):33-38. FU Wenyuan,LING Chaodong.An adaptive iterative chaos optimization method[J].Journal of Xi'an Jiaotong University,2013,47(2):33-38.
    [22] DOS SANTOS JUNIOR I G,DE MELO V C,VINICIUS V.An improved Jaya optimization algorithm with Levy flight[J].Expert Systems With Applications,2021,165:113902.
    [23] COELLO COELLO C A,PULIDO G T,LECHUGA M S,et al.Handling multiple objectives with particle swarm optimization[J].IEEE Transactions on Evolutionary Computation,2004,8(3):256-279.
    [24] MIRJALILI S,JANGIR P,SAREMI S.Multi-objective ant lion optimizer:a multi-objective optimization algorithm for solving engineering problems[J].Applied Intelligence,2017,46(1):79-95.
    [25] MIRJALILI S.Dragonfly algorithm:a new meta-heuristic optimization technique for solving single-objective,discrete,and multi-objective problems[J].Neural Computing and Applications,2016,27(4):1053-1073.
    [26] ZHAO W,ZHANG Z,MIRJALILI S,et al.An effective multi-objective artificial hummingbird algorithm with dynamic elimination-based crowding distance for solving engineering design problems[J].Computer Methods in Applied Mechanics and Engineering,2022,398:115223.
    [27] 谭永怡.论文附录[EB/OL].https://pan.baidu.com/s/12Qkt0iQo9gxub1I0eZ40lg?pwd=dnkf(提取码:dnkf),2023-01-30. TAN Yongyi.Appendix to the paper[EB/OL].https://pan.baidu.com/s/12Qkt0iQo9gxub1I0eZ40lg?pwd=dnkf(extraction code:dnkf),2023-01-30.
    [28] WAN C,QIAN W,ZHAO C,et al.Probabilistic forecasting based sizing and control of hybrid energy storage for wind power smoothing[J].IEEE Transactions on Sustainable Energy,2021,12(4):1841-1852.
    [29] 张晴,李欣然,杨明,等.净效益最大的平抑风电功率波动的混合储能容量配置方法[J].电工技术学报,2016,31(14):40-48. ZHANG Qing,LI Xinran,YANG Ming,et al.Capacity determination of hybrid energy storage system for smoothing wind power fluctuations with maximum net benefit[J].Transactions of China Electrotechnical Society,2016,31(14):40-48.
    [30] 帅茂杭,熊国江,胡晓,等.基于改进多目标骨干粒子群算法的电力系统环境经济调度[J].控制与决策,2022,37(4):997-1004. SHUAI Maohang,XIONG Guojiang,HU Xiao,et al.economic emission dispatch of power system based on improved bare-bone multi-objective particle swarm optimization algorithm[J].Control and Decision,2022,37(4):997-1004.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王 欣,谭永怡,秦 斌.改进MOGOA及其在风储容量优化配置中的应用[J].电力科学与技术学报,2024,39(2):159-169.
WANG Xin, TAN Yongyi, QIN Bin. Improved multi‑objective grasshopper algorithm applied in optimal capacity allocation of energy storage system in wind farms[J]. Journal of Electric Power Science and Technology,2024,39(2):159-169.

复制
分享
文章指标
  • 点击次数:134
  • 下载次数: 544
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2024-05-29
文章二维码