改进MOGOA及其在风储容量优化配置中的应用
作者:
作者单位:

(湖南工业大学电气与信息工程学院,湖南 株洲 412007)

作者简介:

通讯作者:

秦 斌(1963—),男,博士,教授,主要从事复杂系统测控技术及应用研究;E?mail:qinbin99p@163.com

中图分类号:

TM715,TP18

基金项目:

国家自然科学基金(62033014);湖南省自然科学基金(2021JJ50006;2022JJ50074)


Improved multi‑objective grasshopper algorithm applied in optimal capacity allocation of energy storage system in wind farms
Author:
Affiliation:

(College of Electrical and Information Engineering, Hunan University of Technology,Zhuzhou 412007,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统方法在风储容量优化配置过程中求解精度低、效率低等问题,提出一种改进多目标蝗虫优化算法(improved multi?objective grasshopper optimization algorithm,IMOGOA),采用Fuch混沌映射、余弦自适应参数和莱维飞行三种策略进行改进,使算法的初始解分布更均匀、全局探索和局部开发更协调,同时增强了算法跳出局部最优的能力。对改进算法和多目标粒子群等多个算法进行性能测试对比,实验结果表明改进算法具有更好的寻优精度和稳定性。将该算法应用于风电场混合储能系统容量优化配置,对比其他算法,改进算法能够快速找出Pareto最优解集,在满足系统要求的同时,最大限度降低混合储能系统成本,可以验证算法改进策略的有效性和应用于实际优化问题的适用性。

    Abstract:

    Aiming at the problems of low solution accuracy and efficiency in the optimal capacity allocation of energy storage system in wind farms with traditional methods, an improved multi-objective grasshopper optimization algorithm (IMOGOA) is proposed. Three strategies including Fuch chaos mapping, cosine adaptive parameters, and Levy flight are adopted for improvement, which makes the initial solution distribution of the algorithm more uniform, global exploration and local development more coordinated, and enhances the ability for algorithm to jump out of the local optimum. Performance tests are conducted to compare the improved algorithm with multiple algorithms such as multi-objective particle swarm optimization and et al. Experimental results show that the improved algorithm has better optimization accuracy and stability. When applied to the optimal capacity allocation for hybrid energy storage system in wind farms, compared with other algorithms, the improved algorithm can quickly find the Pareto optimal solution set. While meeting the system requirements, it minimizes the cost of the hybrid energy storage system, which verifies the effectiveness of the algorithm on improving strategy and its applicability to practical optimization problems.

    参考文献
    相似文献
    引证文献
引用本文

王 欣,谭永怡,秦 斌.改进MOGOA及其在风储容量优化配置中的应用[J].电力科学与技术学报,2024,39(2):159-169.
WANG Xin, TAN Yongyi, QIN Bin. Improved multi‑objective grasshopper algorithm applied in optimal capacity allocation of energy storage system in wind farms[J]. Journal of Electric Power Science and Technology,2024,39(2):159-169.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-29
  • 出版日期:
文章二维码