LSTM‑EKF算法实现储能集装箱电芯SOC的优化估计
作者:
作者单位:

(1.国网湖北省电力有限公司经济技术研究院,湖北 武汉430061;2.武汉工程大学电气信息学院,湖北 武汉 430073)

作者简介:

通讯作者:

刘 健(1979—),男,博士,教授,主要从事电力系统与新能源领域的研究;E?mail: liujian@wit.edu.cn

中图分类号:

TM912

基金项目:

国家科技攻关计划(2014BAA04B00);国网湖北经研院科技项目(B31538222027)


Optimal estimation of cell SOC in energy storage container with LSTM‑EKF algorithm
Author:
Affiliation:

(1.Economic and Technical Research Institute,State Grid Hubei Electric Power Co., Ltd., Wuhan 430061,China;2.College of Electrical and Electronic Engineering, Wuhan Institute of Technology, Wuhan 430073, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    储能集装箱是锂电池储能电站的核心设备,每个集装箱由数千只电芯串并联构成。因此,对集装箱电芯锂电池荷电状态(state of charge,SOC)的准确估计成为表征储能电站运行最核心最基础的参数,并且为辅助新能源高效并网,储能系统的工作状态也会相应地呈现随机性、波动性和不确定性,这对电芯状态估计的准确度提出了更高的要求。为此,首先基于基尔霍夫定律建立Thevenin电池模型,根据安时积分法列出系统的状态和观测方程,并且将其状态和观测方程作为扩展卡尔曼滤波(extended Kalman filtering,EKF)算法的研究对象。然后利用EKF算法对估计值电池SOC更新迭代,再将EKF算法中得到的卡尔曼矩阵和状态变量更新误差值以及UDDS工况下的电池数据,作为长短期记忆(long short?term memory,LSTM)神经网络算法的训练数据集,由此完成LSTM?EKF联合算法,实现对储能集装箱电芯SOC的优化估计。该文所提LSTM?EKF算法可将电芯SOC的误差值降低到1%以下。最后对优化算法在储能电站安全运行与监控平台中的应用情况进行介绍。

    Abstract:

    Energy storage container is the core equipment of a power plant for lithium battery energy storage . Each container is composed of thousands of cells connected in series and parallel. Therefore, the accurate estimation of the state of charge (SOC) of lithium batteries in container cores becomes the core and basic parameter to characterize the operation of a power plant for energy storage. Moreover, in order to assist the new energy to be connected to the grid efficiently, the operating state of the energy storage system is randomness, fluctuation and uncertainty, which requires higher accuracy of the cell state estimation. In this paper, the Thevenin model of battery is firstly established on the basis of the Kirchhoff's circuit laws. The state and observation equations of the system are listed according to the ampere-time integration method, and then as the study object for the extended Kalman filter (EKF) algorithm. The EKF algorithm is used to update and iterate the estimated SOC of battery. The updated error values of the Kalman matrix and state variables derived from the EKF algorithm, and the battery data under UDDS conditions are as a training data set for long-term and short-term memory (LSTM) neural network algorithm. The joint algorithm of LSTM-EKF is thus completed to achieve an optimized estimation of the SOC of batteries in container cores. The SOC error can be reduced to less than 1% by the proposed LSTM-EKF algorithm. The optimization algorithm applied in the safe operation and monitoring platform of energy storage power station is finally introduced.

    参考文献
    相似文献
    引证文献
引用本文

刘 巨,任羽纶,易柏年,等. LSTM‑EKF算法实现储能集装箱电芯SOC的优化估计[J].电力科学与技术学报,2024,39(2):198-206.
LIU Ju, REN Yulun, YI Bonian, et al. Optimal estimation of cell SOC in energy storage container with LSTM‑EKF algorithm[J]. Journal of Electric Power Science and Technology,2024,39(2):198-206.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-29
  • 出版日期:
文章二维码