连续雷电冲击下杆塔导电混凝土基础的热效应分析
CSTR:
作者:
作者单位:

(1.长沙理工大学电气与信息工程学院,湖南 长沙 410114;2.长沙电力职业技术学院电网技术系,湖南 长沙 410131)

通讯作者:

周力行(1962—),男,博士,教授,主要从事电气设备绝缘监测与故障诊断、电力系统防雷接地等研究;E?mail:1557278935@qq.com

中图分类号:

TM862

基金项目:

国家自然科学基金面上基金(52177015)


Thermal effect analysis of tower conductive concrete foundation under ontinuous lightning strike
Author:
Affiliation:

(1.School of Electrical & Information Engineering,Changsha University of Science & Technology, Changsha 410114, China;2.Department of Power Grid Technology,Changsha Electric Power Technical College, Changsha 410131, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • | | | |
  • 文章评论
    摘要:

    导电混凝土做输电线路杆塔基础接地已在国内多个工程中得到试点应用。但其连续雷电冲击作用下杆塔导电混凝土基础的温升特性目前尚需理论分析与试验研究。为此,考虑连续雷电冲击下土壤电离的火花效应及其累积效应,建立杆塔导电混凝土基础散流的ATP?EMTP仿真模型,计算导电混凝土的杆塔基础在受到连续雷电流冲击作用时的热稳定情况,为工程实际提供理论参考。结果表明:在雷电冲击下,导电混凝土基础的热效应改变了周围土壤的盐碱度和含水量,提高周围土壤的电阻率,使得接地电阻相较于雷击前提高了6.56%;当连续雷电冲击次数n≤2时,导电混凝土基础上产生的温升Δt=287.06<300 ℃,此时杆塔导电混凝土基础是安全稳定的。当n≥3时,Δt>300 ℃,导电混凝土基础的结构存在被破坏的可能,有可能给电力系统稳定运行带来安全风险。因此,在工程实际中采用导电混凝土基础作为杆塔接地装置,应当尽可能减小导电混凝土基础周围土壤的电阻率,增强其散流散热能力。

    Abstract:

    Conductive concrete applied as power transmission tower foundation grounding has been piloted in many domestic engineering projects. However, the temperature rise characteristics of conductive concrete foundation under continuous lightning impact still need further theoretical analysis and experimental research. In this paper, the spark effect of soil ionization under continuous lightning impact and its cumulative effect are considered. An ATP-EMTP simulation model for the dispersion effect of conductive concrete tower foundation is established. The thermal stability of the conductive concrete foundation suffering continuous lightning strike is calculated, which provides theoretical reference for engineering practice. The results show that the thermal effect of conductive concrete foundation changes the salinity and water content of the surrounding soil under lightning impulse. Thus, the resistivity of the surrounding soil is improved, which results in 6.56% increase of the grounding resistance. When the number of continuous lightning impulse n≤2, the temperature rise of conductive concrete foundation Δt=287.06<300 ℃, the conductive concrete foundation of tower is safe and stable. Once n≥3, the temperature rise Δt>300 ℃, the structure of conductive concrete foundation may be destructed, which may bring safety risks to the stable operation of power system. Therefore, in actual engineering applying conductive concrete foundation grounding, the resistivity of the soil around the foundation should be reduced to improve the dissipative heat capacity.

    参考文献
    [1] 杨柳林,李宇.基于改进的两支路ResNet的配电网接地故障辨识和选线[J].电测与仪表,2022,59(10):100-107. YANG Liulin,LI Yu.Grounding fault identification and line selection of distribution network basedon improved two-branch ResNet[J].Electrical Measurement & Instrumentation,2022,59(10):100-107.
    [2] 陈池瑶,苗世洪,殷浩然,等.基于注意力机制—卷积神经网络的配电网单相接地故障选线方法[J].电力建设,2023,44(4):82-93. CHEN Chiyao,MIAO Shihong,YIN Haoran,et al. Single-phase grounding-fault line selection method based on attention mechanism-convolution neural network for distribution network[J]. Electric Power Construction,2023,44(4):82-93.
    [3] 唐祖全,钱觉时,杨再富.导电混凝土研究进展[J].重庆建筑大学学报,2006,28(6):135?139. TANG Zuquan,QIAN Jueshi,YANG Zaifu. Research progress of electr ically conductive concret[J].Journal of Chongqing Jianzhu University,2006,28(6):135?139.
    [4] 孙旭.导电混凝土在变地站接地网中的应用[J].高电压技术,2001,27(S1):66?67. SUN Xu.Application of conductive concrete in grounding grid in substation[J].High Voltage Engineering,2001,27(S1):66?67.
    [5] 蔡力,田汭鑫,魏俊涛,等.连续冲击电流脉冲下避雷器阀片电气性能研究[J].电工技术学报,2023,38(S1):168-176. CAI Li,TIAN Ruixin,WEI Juntao,et al. Research on the electrical performance of ZnO varistors under multiple impulse current pulse[J].Transactions of China Electrotechnical Society,2023,38(S1):168-176.
    [6] 彭程,阳晋,邹军.共享杆塔时域仿真模型及线缆雷电流分布[J].高压电器,2022,58(4):40-46. PENG Cheng,YANG Jin,ZOU Jun.Time domain simulation model of shared tower and lightning current distribution of cable[J]. High Voltage Apparatus,2022,58(4):40-46.
    [7] DL/T 620—1997.交流电气装置的过电压保护和绝缘配合[S]. DL/T 620—1997.Overvoltage protection and insulation coordination for AC electrical installations[S].
    [8] 李臻奇,蔡翔,易浩,等.考虑接地电阻特性影响的差异性杆塔接地设计[J].电力科学与技术学报,2016,31(4):168-174. LI Zhenqi,CAI Xiang,YI Hao,et al.Study on difference tower grounding considering the characteristics of the grounding resistance[J]. Journal of Electric Power Science and Technology,2016,31(4):168-174.
    [9] 李云阁.ATP-EMTP及其在电力系统中的应用[M].北京:中国电力出版社,2016:55-56. LI Yunge.ATP-EMTP and its application in power system[M].Beijing:China Power Publishing House,2016:55-56.
    [10] 龚泽. 基于OPGW的输电线路雷击定位方法研究[D].武汉:华中科技大学,2016. GONG Ze. Research of Lighting Striking location on transmission line based on OPGW[D].Wuhan:Huazhong University of Science and Technology,2016.
    [11] 任华,李健,弥潇,等.±1 100 kV吉泉线雷击致灾因子权重分析及高风险杆塔筛选[J].中国电力,2022,55(2):115-124. REN Hua,LI Jian,MI Xiao,et al. Weight analysis of lightning disaster factors and high risk tower identification for ±1?100 kV Jiquan line[J].Electric Power,2022,55(2):115-124.
    [12] 张静.闪电通道辐射特性及耦合效应的研究[D].南京:南京信息工程大学,2018. ZHANG Jing. Analyses on radiation and coupling characteristics of lightning channel[D].Nanjing:Nanjing University of Information Science and Technology,2018.
    [13] 王宇鹏,蒋哲,武诚,等.基于直流短路比的交直流系统送端暂态过电压评估指标研究[J].智慧电力,2023,51(12):8-14+22. WANG Yupeng,JIANG Zhe,WU Cheng,et al.Evaluation index of transient overvoltage in AC/DC sending-end system based on DC short-circuit ratio[J].Smart Power,2023,51(12):8-14+22.
    [14] 黄亮亮,陈建坤,温彦军,等.基于5G通信的配电网架空线路差动保护应用技术[J].供用电,2022,39(9):5-10. HUANG Liangliang,CHEN Jiankun,WEN Yanjun,et al.Differential protection application technology of distribution network overhead line based on 5G communication[J].Distribution & Utilization,2022,39(9):5-10.
    [15] 吴献,崔玉茜,回国臣,等.炭黑导电混凝土和碳纤维炭黑导电混凝土电热试验[J].沈阳建筑工程学院学报(自然科学版),2015,31(3):449?457. WU Xian,CUI Yuqian,HUI Guocheng,et al.Experimental study on the electro?thermal behavior of conductive concretes with carbon black and carbon fiber?carbon black[J].Journal of Shenyang Jianzhu University (Natural Science),2015,31(3):449?457.
    [16] 匡福志,李霞,钟湘平,等.山区配电线路塔位地形雷击风险分类[J].电力科学与技术学报,2021,36(4):66-72. KUANG Fuzhi,LI Xia,ZHONG Xiangping, et al.Classification of lightning strike riskfor distribution line tower terrain in mountainous area[J].Journal of Electric Power Science and Technology,2021,36(4):66-72.
    [17] 黄宇辰,杨真. 雷击输电线路时全波电磁暂态特性研究[J].电网与清洁能源,2022,38(9):10-16. HUANG Yuchen,YANG Zhen. A study on full-wave electromagnetic transient characteristics when lightning strikes a transmission line[J].Power System and Clean Energy,2022,38(9):10-16.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张牧桑,冯子阳,汤 昕,等.连续雷电冲击下杆塔导电混凝土基础的热效应分析[J].电力科学与技术学报,2024,39(2):249-254.
ZHANG Musang, FENG Ziyang, TANG Xin, et al. Thermal effect analysis of tower conductive concrete foundation under ontinuous lightning strike[J]. Journal of Electric Power Science and Technology,2024,39(2):249-254.

复制
分享
文章指标
  • 点击次数:126
  • 下载次数: 591
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2024-05-29
文章二维码