基于向量自回归模型的电网虚假数据注入攻击检测
CSTR:
作者:
作者单位:

(1.三峡大学电气与新能源学院,湖北 宜昌 443002;2.湖北省输电线路工程技术研究中心,湖北 宜昌 443002)

通讯作者:

陈将宏(1979—),男,博士,讲师,主要从事电力系统可靠度分析研究;E?mail:chenjh97@126.com

中图分类号:

TM734

基金项目:

国家自然科学基金(52107108)


Detection method of false data injection attacks on power grids based on vector auto‑regression model
Author:
Affiliation:

(1.College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China;2.Hubei Provincial Engineering Technology Research Center for Power Transmission Line, Yichang 443002, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • | | | |
  • 文章评论
    摘要:

    虚假数据注入攻击(false data injection attack,FDIA)是威胁电网运行安全的主要因素之一,其主要通过攻击电网中的一些通信环节,误导电力系统的状态估计结果,给电网安全运行带来巨大威胁。针对FDIA难以有效检测及电力系统状态估计中过程噪声与量测噪声两者协方差矩阵非正定问题,将向量自回归(vector auto regression,VAR)模型引入电力系统状态估计,提出一种基于VAR和加权最小二乘法(weighted least squares,WLS)的FDIA检测方法。首先,建立VAR状态估计模型,将量测噪声视为稳定量,只对过程噪声进行估计,解决两者协方差矩阵的非正定问题;其次,分别采用VAR与WLS对电力系统进行状态估计,采用一致性检验与量测量残差检验对2种方法的结果进行检测,以判定是否存在FDIA;最后,IEEE 14节点和IEEE 30节点仿真结果表明,本文所提检测方法能够成功检测到FDIA,且检测成功率较高,从而验证了该方法的可行性及有效性。

    Abstract:

    False data injection attack (FDIA) is one of the major factors threatening the operational security of power grids. It primarily targets communication links within power grids, misleading the state estimation results of the power system and posing significant risks to grid security. Addressing the challenges of effectively detecting FDIA and the non-positive definite covariance matrix of process noise and measurement noise in power system state estimation, this paper introduces the vector auto-regression (VAR) model into power system state estimation and proposes an FDIA detection method based on VAR and weighted least squares (WLS). Firstly, a VAR state estimation model is established, treating measurement noise as a stable quantity and estimating only process noise, thereby resolving the non-positive definite issue of the covariance matrix. Secondly, both VAR and WLS are used for power system state estimation, and the results of the two methods are detected using consistency checks and measurement residual tests to determine the presence of FDIA. Finally, simulation results from IEEE 14-bus and IEEE 30-bus systems demonstrate that the proposed detection method can successfully detect FDIA with a high success rate, verifying the feasibility and effectiveness of the method.

    参考文献
    [1] 周孝信,鲁宗相,刘应梅,等.中国未来电网的发展模式和关键技术[J].中国电机工程学报,2014,34(29):4999-5008. ZHOU Xiaoxin,LU Zongxiang,LIU Yingmei,et al.Development models and key technologies of future grid in China[J].Proceedings of the CSEE,2014,34(29):4999-5008.
    [2] 张晶,陈垚,孙俊,等.基于协同执行器的GCPS自适应调度模型[J].系统仿真学报,2019,31(10):2112-2121. ZHANG Jing,CHEN Yao,SUN Jun,et al.GCPS adaptive scheduling model based on cooperative executor[J].Journal of System Simulation,2019,31(10):2112-2121.
    [3] 蔡文亮,赵正晖,汪洋,等.面向新型能源结构的系统调频技术回顾与展望[J].电测与仪表,2023,60(10):1-9. CAI Wenliang,ZHAO Zhenghui,WANG Yang,et al.Review and prospect of frequency modulation technology for new energy structure[J].Electrical Measurement & Instrumentation,2023,60(10):1-9.
    [4] 李晓,许剑冰,李满礼,等.考虑信息失效影响的配电网信息物理系统安全性评估方法[J].中国电力,2022,55(2):73-81. LI Xiao,XU Jianbing,LI Manli,et al.A security evaluation method for cyber physical distribution system considering influence of information failure[J].Electric Power,2022,55(2):73-81.
    [5] 夏云舒,王勇,周林,等.基于改进生成对抗网络的虚假数据注入攻击检测方法[J].电力建设,2022,43(3):58-65. XIA Yunshu,WANG Yong,ZHOU Lin,et al.False data injection attack detection method based on improved generative adversarial network[J].Electric Power Construction,2022,43(3):58-65.
    [6] 彭大天,董建敏,蔡忠闽,等.假数据注入攻击下信息物理融合系统的稳定性研究[J].自动化学报,2019,45(1):196-205. PENG Datian,DONG Jianmin,CAI Zhongmin,et al.On the stability of cyber-physical systems under false data injection attacks[J].Acta Automatica Sinica,2019,45(1):196-205.
    [7] 郑瑶,张颉,姚文轩,等.基于空间特征的电网同步量测虚假数据注入攻击检测[J].电力系统自动化,2023,47(10):128-134. ZHENG Yao,ZHANG Jie,YAO Wenxuan,et al.Spatial feature based detection of false data injection attack on synchronous grid measurements[J].Automation of Electric Power Systems,2023,47(10):128-134.
    [8] 武津园,王勇,刘丽丽,等.电力假数据注入攻击的残差检测方法效率分析[J].上海电力大学学报,2020,36(6):591-597. WU Jinyuan,WANG Yong,LIU Lili,et al.Efficiency analysis of residual detection method for power false data injection attack[J].Journal of Shanghai University of Electric Power,2020,36(6):591-597.
    [9] 李振华,陶渊,赵爽,等.智能配电网状态估计方法研究现状分析[J].电力科学与技术学报,2019,34(1):115-122. LI Zhenhua,TAO Yuan,ZHAO Shuang,et al.Research situation analysis of state estimation in smart distribution networks[J].Journal of Electric Power Science and Technology,2019,34(1):115-122.
    [10] 罗小元,潘雪扬,王新宇,等.基于自适应Kalman滤波的智能电网假数据注入攻击检测[J].自动化学报,2022,48(12):2960-2971. LUO Xiaoyuan,PAN Xueyang,WANG Xinyu,et al.Detection of false data injection attack in smart grid via adaptive Kalman filtering[J].Acta Automatica Sinica,2022,48(12):2960-2971.
    [11] 朱杰,张葛祥.基于历史数据库的电力系统状态估计欺诈性数据防御[J].电网技术,2016,40(6):1772-1777. ZHU Jie,ZHANG Gexiang.Defense against false data in power system state estimation based on historical database[J].Power System Technology,2016,40(6):1772-1777.
    [12] XU R Z,WANG R,GUAN Z T,et al.Achieving efficient detection against false data injection attacks in smart grid[J].IEEE Access,2017,5:13787-13798.
    [13] 魏利胜,张倩.基于改进的UKF智能电网虚假数据攻击检测[J].系统仿真学报,2023,35(7):1508-1516. WEI Lisheng,ZHANG Qian.Detection of false data injection attack in smart grid based on improved UKF[J].Journal of System Simulation,2023,35(7):1508-1516.
    [14] 许浩文,郭观凯,余玲玲,等.基于非负定自适应卡尔曼滤波的电力系统虚假数据攻击检测[J].科学技术与工程,2020,20(9):3611-3616. XU Haowen,GUO Guankai,YU Lingling,et al.Nonnegative-definite adaptive Kalman filter-based detection of false data attack in power system[J].Science Technology and Engineering,2020,20(9):3611-3616.
    [15] 刘鑫蕊,常鹏,孙秋野.基于XGBoost和无迹卡尔曼滤波自适应混合预测的电网虚假数据注入攻击检测[J].中国电机工程学报,2021,41(16):5462-5476. LIU Xinrui,CHANG Peng,SUN Qiuye.Grid false data injection attacks detection based on XGBoost and unscented Kalman filter adaptive hybrid prediction[J].Proceedings of the CSEE,2021,41(16):5462-5476.
    [16] CHEN Y,HAYAWI K,ZHAO Q,et al.Vector auto-regression-based false data injection attack detection method in edge computing environment[J].Sensors,2022,22(18):6789.
    [17] 王竞才,李琰,徐天奇.基于扩展卡尔曼滤波的智能电网虚假数据检测[J].智慧电力,2022,50(3):50-56. WANG Jingcai,LI Yan,XU Tianqi.Detection of false data in smart grid based on extended Kalman filter[J].Smart Power,2022,50(3):50-56.
    [18] 李欣,易柳含,刘晨凯,等.基于数据驱动的电力系统虚假数据注入攻击检测[J].智慧电力,2023,51(2):30-37. LI Xin,YI Liuhan,LIU Chenkai,et al.False data injection attacks detection in power system based on data-driven algorithm[J].Smart Power,2023,51(2):30-37.
    [19] 方陈,姚维强,魏新迟,等.考虑节点时空相关性的有限配电网PMU装置优化部署[J].电网与清洁能源,2023,39(8):105-115. FANG Chen,YAO Weiqiang,WEI Xinchi,et al.Optimal placement of limited distribution PMU considering spatiotemporal correlation of nodes[J].Power System and Clean Energy,2023,39(8):105-115.
    [20] LIU Y,NING P,REITER M K.False data injection attacks against state estimation in electric power grids[C]//Proceedings of the 16th ACM conference on Computer and Communications Security.Chicago Illinois USA.ACM,2009:21-32.
    [21] 潘浩,卫志农,黄蔓云,等.基于时域模型的电?气综合能源系统分布式鲁棒状态估计[J].电力系统自动化,2023,47(17):89-98. PAN Hao,WEI Zhinong,HUANG Manyun,et al.Distributed robust state estimation of integrated electricity-gas system based on time-domain model[J].Automation of Electric Power Systems,2023,47(17):89-98.
    [22] 常盛.考虑虚假数据攻击的电力信息物理系统检测方法研究[D].秦皇岛:燕山大学,2020. CHANG Sheng.Research on detection method of power cyber-physical system considering false data attacks[D].Qinhuangdao:Yanshan University,2020.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈将宏,饶佳黎,李伟亮,等.基于向量自回归模型的电网虚假数据注入攻击检测[J].电力科学与技术学报,2024,(3):1-9.
CHEN Jianghong, RAO Jiali, LI Weiliang, et al. Detection method of false data injection attacks on power grids based on vector auto‑regression model[J]. Journal of Electric Power Science and Technology,2024,(3):1-9.

复制
分享
文章指标
  • 点击次数:225
  • 下载次数: 225
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2024-07-25
文章二维码