虚假数据注入攻击下基于容积卡尔曼滤波的电力系统状态估计
CSTR:
作者:
作者单位:

(1.上海电机学院电气学院,上海 201306; 2.上海第二工业大学智能制造与控制工程学院,上海 201209)

通讯作者:

刘永慧(1986—),女,博士,副教授,主要从事电力系统智能控制和切换系统研究;E?mail:liuyh@sspu.edu.cn

中图分类号:

TP273

基金项目:

国家自然科学基金(61803253)


State estimation of power system based on cubature Kalman filter under false data injection attacks
Author:
Affiliation:

(1.School of Electrical Engineering, Shanghai Dianji University, Shanghai 201306, China; 2.School of Intelligent Manufacturing and Control Engineering, Shanghai Polytechnic University, Shanghai 201209, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • | | | |
  • 文章评论
    摘要:

    针对虚假数据注入攻击下系统状态估计的问题,以电力信息物理系统为研究对象,根据发电机三阶模型和自动电压调节器模型,建立电力系统的数学模型。采用指数平滑法预测测量值,通过对比预测值与真实测量值,检测系统是否发生虚假数据注入攻击。若检测结果判定系统遭受虚假数据注入攻击,用预测值替代不良数据输入状态估计算法,实现虚假数据注入攻击下不良数据的恢复。将指数平滑法与容积卡尔曼滤波算法结合,提出一种改进的容积卡尔曼滤波算法对系统进行状态估计。以典型的五机电力系统为例进行仿真,仿真结果表明提出的方法能有效抵御虚假数据对系统状态估计造成的不良影响。

    Abstract:

    Aiming at the problem of system state estimation under false data injection attacks, the mathematical model of power system was established according to the third-order model of generator and the model of automatic voltage regulator, taking the cyber-physical power system as the research object. The exponential smoothing method was used to predict the measured value, and by comparing the predicted value with the actual measured value, it detected whether there were false data injection attacks in the system. If the detection results determine that the system being subjected to false data injection attacks, the predicted value is used instead of the bad data input state estimation algorithm to restore corrupted data cansed by these attacks. Combining the exponential smoothing method with the cubature Kalman filter algorithm, an improved cubature Kalman filter algorithm was proposed to estimate the state of the system. Taking a typical five-machine power system as an example, the simulation results show that the proposed method can effectively prevent the adverse effects of false data on system state estimation.

    参考文献
    [1] 吴海涛,代尚林,乔中伟,等.基于RBF-SVM智能配变终端的网络安全态势评估[J].电力科学与技术学报,2021,36(5):35-40. WU Haitao,DAI Shanglin,QIAO Zhongwei,et al.Research on network security situation awareness of intelligent distribution transformer terminal unit based on RBF-SVM[J].Journal of Electric Power Science and Technology,2021,36(5):35-40.
    [2] 赵化时,李胜,林子杰,等.电力系统低模型耦合智能状态估计[J].电力科学与技术学报,2022,37(2):116-128. ZHAO Huashi,LI Sheng,LIN Zijie,et al.Smart power system state estimation with low model coupling[J].Journal of Electric Power Science and Technology,2022,37(2):116-128.
    [3] 郭方洪,易新伟,徐博文,等.基于深度信念网络和迁移学习的隐匿FDI攻击入侵检测[J].控制与决策,2022,37(4):913-921. GUO Fanghong,YI Xinwei,XU Bowen,et al.Stealthy FDI attack detection based on deep belief network and transfer learning[J].Control and Decision,2022,37(4):913-921.
    [4] 王竞才,李琰,徐天奇.基于扩展卡尔曼滤波的智能电网虚假数据检测[J].智慧电力,2022,50(3):50-56. WANG Jingcai,LI Yan,XU Tianqi.Detection of false data in smart grid based on extended Kalman filter[J].Smart Power,2022,50(3):50-56.
    [5] RANA M M,BO R,ABDELHADI A.Distributed grid state estimation under cyber attacks using optimal filter and Bayesian approach[J].IEEE Systems Journal,2021,15(2):1970-1978.
    [6] YAN J J,YANG G H,WANG Y.Dynamic reduced-order observer-based detection of false data injection attacks with application to smart grid systems[J].IEEE Transactions on Industrial Informatics,2022,18(10):6712-6722.
    [7] 夏云舒,王勇,周林,等.基于改进生成对抗网络的虚假数据注入攻击检测方法[J].电力建设,2022,43(3):58-65. XIA Yunshu,WANG Yong,ZHOU Lin,et al.False data injection attack detection method based on improved generative adversarial network[J].Electric Power Construction,2022,43(3):58-65.
    [8] ZHAO J B,ZHANG G X,LA SCALA M,et al.Short-term state forecasting-aided method for detection of smart grid general false data injection attacks[J].IEEE Transactions on Smart Grid,2017,8(4):1580-1590.
    [9] 刘鑫蕊,常鹏,孙秋野.基于XGBoost和无迹卡尔曼滤波自适应混合预测的电网虚假数据注入攻击检测[J].中国电机工程学报,2021,41(16):5462-5476. LIU Xinrui,CHANG Peng,SUN Qiuye.Grid false data injection attacks detection based on XGBoost and unscented Kalman filter adaptive hybrid prediction[J].Proceedings of the CSEE,2021,41(16):5462-5476.
    [10] ZHANG Y,WANG J H,CHEN B.Detecting false data injection attacks in smart grids:a semi-supervised deep learning approach[J].IEEE Transactions on Smart Grid,2021,12(1):623-634.
    [11] 李元诚,曾婧.基于改进卷积神经网络的电网假数据注入攻击检测方法[J].电力系统自动化,2019,43(20):97-104. LI Yuancheng,ZENG Jing.Detection method of false data injection attack on power grid based on improved convolutional neural network[J].Automation of Electric Power Systems,2019,43(20):97-104.
    [12] 朱杰,张葛祥,王涛,等.电力系统状态估计欺诈性数据攻击及防御综述[J].电网技术,2016,40(8):2406-2415. ZHU Jie,ZHANG Gexiang,WANG Tao,et al.Overview of fraudulent data attack on power system state estimation and defense mechanism[J].Power System Technology,2016,40(8):2406-2415.
    [13] 杨奕贤,郭力,王洪达,等.基于数据驱动的直流微电网虚假数据注入攻击快速防御策略[J].电力自动化设备,2021,41(5):145-151. YANG Yixian,GUO Li,WANG Hongda,et al.Fast defense strategy of false data injection attack in DC microgrid based on data-driven[J].Electric Power Automation Equipment,2021,41(5):145-151.
    [14] 郑瑶,张颉,姚文轩,等.基于空间特征的电网同步量测虚假数据注入攻击检测[J].电力系统自动化,2023,47(10):128-134. ZHENG Yao,ZHANG Jie,YAO Wenxuan,et al.Spatial feature based detection of false data injection attack on synchronous grid measurements[J].Automation of Electric Power Systems,2023,47(10):128-134.
    [15] 李欣,易柳含,刘晨凯,等.基于数据驱动的电力系统虚假数据注入攻击检测[J].智慧电力,2023,51(2):30-37. LI Xin,YI Liuhan,LIU Chenkai,et al.False data injection attacks detection in power system based on data-driven algorithm[J].Smart Power,2023,51(2):30-37.
    [16] WANG X.Power systems dynamic state estimation with the two-step fault tolerant extended Kalman filtering[J].IEEE Access,2021,9:137211-137223.
    [17] 李扬,李京,陈亮,等.复杂噪声条件下基于抗差容积卡尔曼滤波的发电机动态状态估计[J].电工技术学报,2019,34(17):3651-3660. LI Yang,LI Jing,CHEN Liang,et al.Dynamic state estimation of synchronous machines based on robust cubature Kalman filter under complex measurement noise conditions[J].Transactions of China Electrotechnical Society,2019,34(17):3651-3660.
    [18] 孙怡,何光宇,翟少鹏.基于无迹卡尔曼滤波的电力系统抗差动态估计[J].电测与仪表,2020,57(4):1-6. SUN Yi,HE Guangyu,ZHAI Shaopeng.Robust dynamic estimation for power system based on unscented Kalman filter[J].Electrical Measurement & Instrumentation,2020,57(4):1-6.
    [19] 尚彦赟,宋红为,杨照光,等.基于二阶RC模型的锂电池充放电特性分析[J].高压电器,2023,59(7):87-94. SHANG Yanyun,SONG Hongwei,YANG Zhaoguang,et al.Charge and discharge characteristics analysis of lithium battery based on second-order RC model[J].High Voltage Apparatus,2023,59(7):87-94.
    [20] 李伟康,马刚,高丛,等.基于改进UKF的电—气耦合系统状态估计[J].电网与清洁能源,2023,39(9):1-8,18. LI Weikang,MA Gang,GAO Cong,et al.The state estimation of the electric-gas coupling system based on improved UKF[J].Power System and Clean Energy,2023,39(9):1-8,18.
    [21] 黄蔓云,王天昊,卫志农,等.基于长短期记忆网络的UKF动态谐波状态估计[J].电力系统保护与控制,2022,50(11):1-11. HUANG Manyun,WANG Tianhao,WEI Zhinong,et al.Dynamic harmonic state estimation of an unscented Kalman filter based on long short-term memory neural networks[J].Power System Protection and Control,2022,50(11):1-11.
    [22] 朱茂林,刘灏,毕天姝.考虑风电场量测相关性的双馈风力发电机鲁棒动态状态估计[J].电工技术学报,2023,38(3):726-740. ZHU Maolin,LIU Hao,BI Tianshu.Robust dynamic state estimation of doubly-fed induction generator considering measurement correlation in wind farms[J].Transactions of China Electrotechnical Society,2023,38(3):726-740.
    [23] RANA M M,LI L,SU S W,et al.Modelling the interconnected synchronous generators and its state estimations[J].IEEE Access,2018,6:36198-36207.
    [24] LIU J Q,GUSRIALDI A,HIRCHE S,et al.Joint controller-communication topology design for distributed wide-area damping control of power systems[J].IFAC Proceedings Volumes,2011,44(1):519-525.
    [25] 刘豹,唐万生.现代控制理论[M].北京:机械工业出版社,2006. LIU Bao,TANG Wansheng.Modern control theory[M]. Beijing:China Machine Press,2006.
    [26] 王国权,王森,刘华勇,等.基于自适应的动态三次指数平滑法的风电场风速预测[J].电力系统保护与控制,2014,42(15):117-122. WANG Guoquan,WANG Sen,LIU Huayong,et al.Self-adaptive and dynamic cubic ES method for wind speed forecasting[J].Power System Protection and Control,2014,42(15):117-122.
    [27] 张叶贵,刘敏.基于容积卡尔曼滤波的配电网状态估计[J].电力科学与工程,2019,35(11):26-30. ZHANG Yegui,LIU Min.State estimation of distribution network based on CKF[J].Electric Power Science and Engineering,2019,35(11):26-30.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

常梦言,刘永慧.虚假数据注入攻击下基于容积卡尔曼滤波的电力系统状态估计[J].电力科学与技术学报,2024,(3):10-18.
CHANG Mengyan, LIU Yonghui. State estimation of power system based on cubature Kalman filter under false data injection attacks[J]. Journal of Electric Power Science and Technology,2024,(3):10-18.

复制
分享
文章指标
  • 点击次数:230
  • 下载次数: 278
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2024-07-25
文章二维码