一种基于KPCA-IF的配电网保护系统异常状况监测模型
CSTR:
作者:
作者单位:

(国网宁夏电力有限公司固原供电公司,宁夏 固原 750003)

通讯作者:

徐 军(1984—)男,硕士,高级工程师,主要从事电力系统自动化、继电保护、配电网调控运行及检修方面的研究;E?mail:dengfw971@163.com

中图分类号:

TM863

基金项目:

国网宁夏电力有限公司科技研发项目(5229GY2000FL)


An anomaly detection method for protection relay system in distribution networks based on KPCA‑IF models
Author:
Affiliation:

(Guyuan power supply company, State Grid Ningxia Electric Power Co., Ltd., Guyuan 750003,China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    由于配电网具有拓扑结构复杂、线路分支较多、空间分布密集等特性,潜在运行扰动及故障难以完全避免,故所配备的保护系统势必确保较高水平的可靠性及稳定性。因此,针对配网保护系统潜在异常运行状态的监测与识别面临新的挑战。为此,提出一种基于数据驱动的运行异常状态实时检测模型。首先,采用核函数主成分分析(kernel principal components analysis,KPCA)流程,针对原始数据实施维度压缩,能够在高维数据环境下降低后续模型的运算复杂度;其次,应用孤立森林(isolated forest,IF)模型,依据各正常运行状态取值范围,挖掘潜在离群样本点,能够在数据呈偏置或稀疏分布环境下保持较高的检测性能,针对异常状况进行快速反应;最后,以某地区配电网继保系统运行数据作为仿真实例,实验结果验证所提出模型在实际应用中较高的异常检测水平,能够助力配网安全风险的自动识别和应对。

    Abstract:

    Due to the complex topology, multiple line branches, and dense spatial distributions of distribution networks, the potential disturbances and failures cannot be eliminated. Thus, a protection system is required to ensure a high level of both reliability and stability. In that case, new challenges in the monitoring and identification of these potential abnormal operation statues must be worked out. To this end, a data-driven-based real-time anomaly detection model is proposed in this paper. To start with, the kernel principal components analysis (KPCA) process is deployed to compress the dimensionality of input data, which can reduce the computational complexity within such high-dimensional data environments. Next, the isolated forest (IF) model is applied to excavate potential outliers according to the numeric range of normal operating states of each feature. Thus, the IF can maintain a high detection performance in the biased or sparse distributions, and react swiftly to those outliers. Finally, the operation data of a relay system in one regional distribution network are utilized in the case study. The results verify the better performance of the proposed model in practical applications, and therefore can be utilized to assist in the automatic identification and response of the risks of distribution networks.

    参考文献
    [1] 陈中,顾叮咚,郭庆.考虑全局相关性的主动配电网电压安全优化控制[J].电力系统自动化,2023,47(21): 99-107. CHEN Zhong,GU Dingdong,GUO Qing.Optimization and control of voltage security in active distribution network considering global correlation[J].Automation of Electric Power Systems,2023,47(21): 99-107.
    [2] 施路炜,徐潇源,严正,等.考虑配电网电压约束的光伏功率升维仿射控制[J].电力系统自动化,2023,47(19): 64-73. SHI Luwei,XU Xiaoyuan,YAN Zheng,et al.Dimension-lifting affine control of photovoltaic power considering voltage constraints of distribution network[J].Automation of Electric Power Systems,2023,47(19): 64-73.
    [3] 崔庆雪,李霞林,葛磊蛟,等.计及时滞的含风电配电网节点电压安全分析[J].电工技术学报,2023,38(5): 1299-1311. CUI Qingxue,LI Xialin,GE Leijiao,et al.Analysis on node voltage security of distribution network with wind power considering time delay[J].Transactions of China Electrotechnical Society,2023,38(5): 1299-1311.
    [4] 杨帆,王梦珺,谭天,等.基于目标像素宽度识别的电力设备红外成像单目测距改进算法[J].电工技术学报,2023,38(8): 2244-2254. YANG Fan,WANG Mengjun,TAN Tian,et al.An improved monocular ranging method for infrared image of power equipment based on the pixel width recognition of objects[J].Transactions of China Electrotechnical Society,2023,38(8): 2244-2254.
    [5] 刘君,邓毅,杨延西,等.基于深度学习的空预器转子红外补光图像积灰状态识别[J].发电技术,2022,43(3): 510-517. LIU Jun,DENG Yi,YANG Yanxi,et al.Ash accumulation state identification for infrared compensation images of air preheater rotor based on deep learning method[J].Power Generation Technology,2022,43(3): 510-517.
    [6] 张向群,王晓静,刘婷婷,等.基于声速频散谱弛豫特征的油中溶解气体检测方法[J].电力系统保护与控制,2023,51(3): 173-180. ZHANG Xiangqun,WANG Xiaojing,LIU Tingting,et al.Detecting dissolved gas mixtures in electrical equipment oil based on relaxation features of sound speed dispersion[J].Power System Protection and Control,2023,51(3): 173-180.
    [7] 文刚,夏宋鹏程,周仿荣,等.面向巡检机器人多源融合鲁棒定位与高逼真仿真方法[J].智慧电力,2022,50(4): 110-116. WEN Gang,XIA Songpengcheng,ZHOU Fangrong,et al.Multi-source fusion robust positioning and high-fidelity simulation method for inspection robots[J].Smart Power,2022,50(4): 110-116.
    [8] 徐波,宋爱国.基于点云配准改进的电力巡检机器人云台伺服技术[J].供用电,2023,40(3): 95-101. XU Bo,SONG Aiguo.PTZ servo technology of electrical power inspection robot based on point cloud registration ICP algorithm[J].Distribution & Utilization,2023,40(3): 95-101.
    [9] 司方远,韩英华,赵强,等.基于AP-LOF离群组检测的配电网连接验证[J].东北大学学报(自然科学版),2020,41(8): 1070-1074. SI Fangyuan,HAN Yinghua,ZHAO Qiang,et al.Verification of distribution network connectivity based on AP-LOF outlier group detection[J].Journal of Northeastern University (Natural Science),2020,41(8): 1070-1074.
    [10] 杨超,伏晓燕.智能变电站继电保护设备全防误状态监测技术研究[J].电网与清洁能源,2023,39(7): 73-79. YANG Chao,FU Xiaoyan.Research on the full error prevention state monitoring technology of relay protection equipment in intelligent substations[J].Power System and Clean Energy,2023,39(7): 73-79.
    [11] 李铁成,刘清泉,任江波,等.基于动态优化马尔可夫链的线路继电保护装置状态预测方法[J].电力系统保护与控制,2022,50(13): 97-106. LI Tiecheng,LIU Qingquan,REN Jiangbo,et al.State prediction method of line relay protection device based on the Markov chain with dynamic optimization[J].Power System Protection and Control,2022,50(13): 97-106.
    [12] 王业,崔玉,陆兆沿,等.基于CNN图像识别算法的保护装置智能巡视技术[J].电力工程技术,2022,41(6): 252-257. WANG Ye,CUI Yu,LU Zhaoyan,et al.Intelligent inspection technology of protection device based on convolution neural network image recognition algorithm[J].Electric Power Engineering Technology,2022,41(6): 252-257.
    [13] HARIRI S,KIND M C,BRUNNER R J.Extended isolation forest[J].IEEE Transactions on Knowledge and Data Engineering,2021,33(4): 1479-1489.
    [14] FAWCETT T.An introduction to ROC analysis[J].Pattern Recognition Letters,2006,27(8): 861-874.
    [15] DAVIS J,GOADRICH M.The relationship between Precision-Recall and ROC curves[C]//Proceedings of the 23rd international conference on Machine learning.Pennsylvania,ACM,2006: 233-240.
    相似文献
    引证文献
引用本文

徐 军,齐蓬勃,李 凡,等.一种基于KPCA-IF的配电网保护系统异常状况监测模型[J].电力科学与技术学报,2024,(3):31-37.
XU Jun, QI Pengbo, LI Fan, et al. An anomaly detection method for protection relay system in distribution networks based on KPCA‑IF models[J]. Journal of Electric Power Science and Technology,2024,(3):31-37.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2024-07-25
文章二维码