基于GRA/EEMD‑Informer混合模型的光储直柔配电系统多数据预测方法
CSTR:
作者:
作者单位:

(1.北京建筑大学电气与信息工程学院,北京 100044;2.悉地(北京)国际建筑设计顾问有限公司,北京 100013)

作者简介:

通讯作者:

岳云涛(1971—),男,博士,副教授,主要从事控制理论与控制工程等研究;E?mail:yueyuntao@bucea.edu.cn

中图分类号:

TM71

基金项目:

国家自然科学基金(61902016);北京建筑大学研究生创新科研项目(07081022003)


Multi‑data prediction method based on GRA/EEMD‑Informer hybrid model for photovoltaic‑storage‑direct‑flexible distribution system
Author:
Affiliation:

(1.School of Electricity and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; 2.CADG Group, Beijing 100013, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有时间序列模型预测光储直柔配电系统短期发用电数据精度不高的问题,提出一种基于灰色关联度分析/集合经验模态分解(grey relation analysis,ensemble empirical mode decomposition,GRA/EEMD?Informer的光储直柔配电系统多数据预测模型,通过灰色关联度分析、模态分解,结合自注意力蒸馏机制,有效捕捉输出和输入之间较精确的长程相关性耦合,降低了时空复杂度,极大缓解了传统编解码的局限性。将已建成并投入使用的光伏发电站某月数据、典型办公建筑某月电力数据及电动汽车充电站运行数据作为原始数据,以均方误差、平均绝对误差、均方根误差作为评价指标对模型进行检验,并进行消融实验与分析,最后与长短期记忆网络(long short?term memory,LSTM)、基于粒子群优化(particle?swarm?optimization,PSO)算法的长短期记忆网络(PSO?LSTM)、Transformer时间序列预测方法对比,结果表明该方法的拟合程度明显高于其他预测方法,验证了GRA/EEMD? Informer算法对提高预测能力的有效性和实用性。

    Abstract:

    Addressing the issue of low accuracy in predicting short-term power generation and consumption data for the photovoltaic-storage-direct-flexible distribution system using existing time series models, a multi-data prediction model based on grey relation analysis (GRA), ensemble empirical mode decomposition (EEMD), and Informer, namely the GRA/EEMD-Informer is proposed. This model effectively captures the precise long-range correlation coupling between outputs and inputs through grey relation analysis, modal decomposition, combined with a self-attention distillation mechanism. It reduces spatiotemporal complexity and significantly alleviates the limitations of traditional encoding and decoding methods. Using data from a photovoltaic power station, the electricity consumption of typical office building, and an electric vehicle charging station for a certain month as the original data, the model is tested using evaluation metrics such as mean squared error (MSE), mean absolute error (MAE), and root mean squared error (RMSE). Ablation experiments and analyses are conducted, and the results are compared with those of long short-term memory (LSTM), particle swarm optimization-based LSTM (PSO-LSTM), and the transformer time series prediction method. The results indicate that the proposed method exhibits significantly higher fitting accuracy than other prediction methods, verifying the effectiveness and practicality of the GRA/EEMD-Informer algorithm in enhancing prediction capabilities.

    参考文献
    相似文献
    引证文献
引用本文

王炳铮,岳云涛,李炳华,等.基于GRA/EEMD‑Informer混合模型的光储直柔配电系统多数据预测方法[J].电力科学与技术学报,2024,(3):86-95.
WANG Bingzheng, YUE Yuntao, LI Binghua, et al. Multi‑data prediction method based on GRA/EEMD‑Informer hybrid model for photovoltaic‑storage‑direct‑flexible distribution system[J]. Journal of Electric Power Science and Technology,2024,(3):86-95.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-25
  • 出版日期:
文章二维码