基于GRA/EEMD‑Informer混合模型的光储直柔配电系统多数据预测方法
CSTR:
作者:
作者单位:

(1.北京建筑大学电气与信息工程学院,北京 100044;2.悉地(北京)国际建筑设计顾问有限公司,北京 100013)

通讯作者:

岳云涛(1971—),男,博士,副教授,主要从事控制理论与控制工程等研究;E?mail:yueyuntao@bucea.edu.cn

中图分类号:

TM71

基金项目:

国家自然科学基金(61902016);北京建筑大学研究生创新科研项目(07081022003)


Multi‑data prediction method based on GRA/EEMD‑Informer hybrid model for photovoltaic‑storage‑direct‑flexible distribution system
Author:
Affiliation:

(1.School of Electricity and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; 2.CADG Group, Beijing 100013, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • | | | |
  • 文章评论
    摘要:

    针对现有时间序列模型预测光储直柔配电系统短期发用电数据精度不高的问题,提出一种基于灰色关联度分析/集合经验模态分解(grey relation analysis,ensemble empirical mode decomposition,GRA/EEMD?Informer的光储直柔配电系统多数据预测模型,通过灰色关联度分析、模态分解,结合自注意力蒸馏机制,有效捕捉输出和输入之间较精确的长程相关性耦合,降低了时空复杂度,极大缓解了传统编解码的局限性。将已建成并投入使用的光伏发电站某月数据、典型办公建筑某月电力数据及电动汽车充电站运行数据作为原始数据,以均方误差、平均绝对误差、均方根误差作为评价指标对模型进行检验,并进行消融实验与分析,最后与长短期记忆网络(long short?term memory,LSTM)、基于粒子群优化(particle?swarm?optimization,PSO)算法的长短期记忆网络(PSO?LSTM)、Transformer时间序列预测方法对比,结果表明该方法的拟合程度明显高于其他预测方法,验证了GRA/EEMD? Informer算法对提高预测能力的有效性和实用性。

    Abstract:

    Addressing the issue of low accuracy in predicting short-term power generation and consumption data for the photovoltaic-storage-direct-flexible distribution system using existing time series models, a multi-data prediction model based on grey relation analysis (GRA), ensemble empirical mode decomposition (EEMD), and Informer, namely the GRA/EEMD-Informer is proposed. This model effectively captures the precise long-range correlation coupling between outputs and inputs through grey relation analysis, modal decomposition, combined with a self-attention distillation mechanism. It reduces spatiotemporal complexity and significantly alleviates the limitations of traditional encoding and decoding methods. Using data from a photovoltaic power station, the electricity consumption of typical office building, and an electric vehicle charging station for a certain month as the original data, the model is tested using evaluation metrics such as mean squared error (MSE), mean absolute error (MAE), and root mean squared error (RMSE). Ablation experiments and analyses are conducted, and the results are compared with those of long short-term memory (LSTM), particle swarm optimization-based LSTM (PSO-LSTM), and the transformer time series prediction method. The results indicate that the proposed method exhibits significantly higher fitting accuracy than other prediction methods, verifying the effectiveness and practicality of the GRA/EEMD-Informer algorithm in enhancing prediction capabilities.

    参考文献
    [1] FONTENOT H,DONG B.Modeling and control of building-integrated microgrids for optimal energy management?A review[J].Applied Energy,2019,254:113689.
    [2] 郜捷,宋洁,王剑晓,等.支撑中国能源安全的电氢耦合系统形态与关键技术[J].电力系统自动化,2023,47(19):1-15. GAO Jie,SONG Jie,WANG Jianxiao,et al.Form and key technologies of integrated electricity-hydrogen system supporting energy security in China[J].Automation of Electric Power Systems,2023,47(19):1-15.
    [3] 郭怿,明波,黄强,等.考虑输电功率平稳性的水—风—光—储多能互补日前鲁棒优化调度[J].电工技术学报,2023,38(9):2350-2363. GUO Yi,MING Bo,HUANG Qiang,et al.Day-ahead robust optimal scheduling of hydro-wind-PV-storage complementary system considering the steadiness of power delivery[J].Transactions of China Electrotechnical Society,2023,38(9):2350-2363.
    [4] 吴晓刚,阎洁,葛畅,等.基于改进GRU-CNN的风光水一体化超短期功率预测方法[J].中国电力,2023,56(9):178-186+205. WU Xiaogang,YAN Jie,GE Chang,et al.Ultra-short-term power forecasting method for wind-solar-hydro integration based on improved GRU-CNN[J].Electric Power,2023,56(9):178-186+205.
    [5] INTEHA A,Nahid-Al-Masood,HUSSAIN F,et al.A data driven approach for day ahead short term load forecasting[J].IEEE Access,2022,10:84227-84243.
    [6] 董志强,郑凌蔚,苏然,等.一种基于IGWO-SNN的光伏出力短期预测方法[J].电力系统保护与控制,2023,51(1):131-138. DONG Zhiqiang,ZHENG Lingwei,SU Ran,et al.An IGWO-SNN-based method for short-term forecast of photovoltaic output[J].Power System Protection and Control,2023,51(1):131-138.
    [7] 方鹏,高亚栋,潘国兵,等.基于LSTM神经网络的中长期光伏电站发电量预测方法研究[J].可再生能源,2022,40(1):48-54. FANG Peng,GAO Yadong,PAN Guobing,et al.Research on forecasting method of mid-and long-term photovoltaic power generation based on LSTM neural Network[J].Renewable Energy Resources,2022,40(1):48-54.
    [8] 王海燕,刘佳康,邓亚平.基于预估—校正综合BP神经网络的短期光伏功率预测[J].智慧电力,2023,51(3):46-52. WANG Haiyan,LIU Jiakang,DENG Yaping.Short-term photovoltaic power forecasting based on predict-correct combination BP neural network[J].Smart Power,2023,51(3):46-52.
    [9] 邹文进,郝少飞,马刚,等.基于CEEMD-GA-BP神经网络的风光发电功率预测[J].电网与清洁能源,2022,38(3):111-118. ZOU Wenjin,HAO Shaofei,MA Gang,et al.Forecast of wind and solar power generation based on CEEMD-GA-BP neural network[J].Power System and Clean Energy,2022,38(3):111-118.
    [10] 王金玉,金宏哲,王海生,等.ISSA优化Attention双向LSTM的短期电力负荷预测[J].电力系统及其自动化学报,2022,34(5):111-117. WANG Jinyu,JIN Hongzhe,WANG Haisheng,et al.Short-term power load prediction of bidirectional LSTM with ISSA optimization attention mechanism[J].Proceedings of the CSU-EPSA,2022,34(5):111-117.
    [11] 王英立,陶帅,候晓晓,等.基于MIV分析的GA-BP神经网络光伏短期发电预测[J].太阳能学报,2020,41(8):236-242. WANG Yingli,TAO Shuai,HOU Xiaoxiao,et al.GA-BP neural network photovoltaic power generation short-term forecast based on miv analysis[J].Acta Energiae Solaris Sinica,2020,41(8):236-242.
    [12] 李毓洋,王媛媛,罗晓敏.基于卷积神经网络算法的高压发电机保护研究[J/OL].长沙理工大学学报(自然科学版),1-8[2024-03-12].https://doi.org/10.19951/j.cnki.1672-9331.20221116002. LI Yuyang,WANG Yuanyuan,LUO Xiaomin.Research on high-voltage generator protection based on CNN[J/OL].Journal of Changsha University of Science & Technology(Natural Science),1-8[2024-03-12].https://doi.org/10.19951/j.cnki.1672-9331.20221116002.
    [13] LI Q Q,XU Y,CHEW B S H,et al.An integrated missing-data tolerant model for probabilistic PV power generation forecasting[J].IEEE Transactions on Power Systems,2022,37(6):4447-4459.
    [14] 阳曾,丁施尹,叶萌,等.基于变分模态分解和深度学习的短期电力负荷预测模型[J].电测与仪表,2023,60(2):126-131+146. YANG Zeng,DING Shiyin,YE Meng,et al.Short-term load forecasting model based on VMD and LSTM[J].Electrical Measurement & Instrumentation,2023,60(2):126-131+146.
    [15] 周文,孟良,杨正富,等.基于时间序列的大型光伏电站发电短期预测[J].电源技术,2021,45(11):1490-1494. ZHOU Wen,MENG Liang,YANG Zhengfu,et al.Short-term forecasting method of large-scale photovoltaic power station based on time series[J].Chinese Journal of Power Sources,2021,45(11):1490-1494.
    [16] 徐岩,向益锋,马天祥.基于EMD-CNN-LSTM混合模型的短期电力负荷预测[J].华北电力大学学报(自然科学版),2022,49(2):81-89. XU Yan,XIANG Yifeng,MA Tianxiang.Short-term power load forecasting method based on EMD-CNN-LSTM hybrid model[J].Journal of North China Electric Power University (Natural Science Edition),2022,49(2):81-89.
    [17] 刘文杰,刘禾,王英男,等.基于完整自适应噪声集成经验模态分解的LSTM-Attention网络短期电力负荷预测方法[J].电力建设,2022,43(2):98-108. LIU Wenjie,LIU He,WANG Yingnan,et al.Short-term power load forecasting method based on CEEMDAN and LSTM-Attention network[J].Electric Power Construction,2022,43(2):98-108.
    [18] FAN C D,DING C K,ZHENG J H,et al.Empirical mode decomposition based multi-objective deep belief network for short-term power load forecasting[J].Neurocomputing,2020,388:110-123.
    [19] 王福忠,王帅峰,张丽.基于VMD-LSTM与误差补偿的光伏发电超短期功率预测[J].太阳能学报,2022,43(8):96-103. WANG Fuzhong,WANG Shuaifeng,ZHANG Li.Ultra short term power prediction of photovoltaic power generation based on vmd-lstm and error compensation[J].Acta Energiae Solaris Sinica,2022,43(8):96-103.
    [20] 张震,李孟洲,李浩方,等.基于VMD-LSTM-MLR的短期电力负荷预测[J].水电能源科学,2021,39(10):208-212. ZHANG Zhen,LI Mengzhou,LI Haofang,et al.Short-term power load forecasting based on VMD-LSTM-MLR[J].Water Resources and Power,2021,39(10):208-212.
    [21] 王俊杰,毕利,张凯,等.基于多特征融合和XGBoost-LightGBM-ConvLSTM的短期光伏发电量预测[J].太阳能学报,2023,44(7):168-174. WANG Junjie,BI Li,ZHANG Kai,et al.Short-term photovoltaic power generation prediction based on multi-feature fusion and XGBoost-LightGBM-ConvLSTM[J].Acta Energiae Solaris Sinica,2023,44(7):168-174.
    [22] LIU Y J,MENG F D,ZHOU J,et al.Faster depth-adaptive transformers[J].Proceedings of the AAAI Conference on Artificial Intelligence,2021,35(15):13424-13432.
    [23] LI Y Y,LIN Y,XIAO T,et al.An efficient transformer decoder with compressed sub-layers[J].Proceedings of the AAAI Conference on Artificial Intelligence,2021,35(15):13315-13323.
    [24] ZHOU H Y,ZHANG S H,PENG J Q,et al.Informer:beyond efficient transformer for long sequence time-series forecasting[J].Proceedings of the AAAI Conference on Artificial Intelligence,2021,35(12):11106-11115.
    [25] HAN Z Y,ZHAO J,LEUNG H,et al.A review of deep learning models for time series prediction[J].IEEE Sensors Journal,2021,21(6):7833-7848.
    [26] ARUNKUMAR K E,KALAGA D V,MOHAN SAI KUMAR C,et al.Comparative analysis of gated recurrent units (GRU),long short-term memory (LSTM) cells,autoregressive integrated moving average (ARIMA),seasonal autoregressive integrated moving average (SARIMA) for forecasting COVID-19 trends[J].Alexandria Engineering Journal,2022,61(10):7585-7603.
    [27] 班斓.基于长短记忆神经网络的短期光伏功率预测研究[D].南宁:广西大学,2021. BAN Lan.Research on short-term photovoltaic power prediction based on long-term memory neural network[D].Nanning:Guangxi University,2021.
    [28] MA C B,ZHANG P,SONG F,et al.KD-informer:a cuff-less continuous blood pressure waveform estimation approach based on single photoplethysmography[J].IEEE Journal of Biomedical and Health Informatics,2023,27(5):2219-2230.
    [29] LU W,GAO L F,LI Z B,et al.Prediction of long-term elbow flexion force intervals based on the informer model and electromyography[J].Electronics,2021,10(16):1946.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王炳铮,岳云涛,李炳华,等.基于GRA/EEMD‑Informer混合模型的光储直柔配电系统多数据预测方法[J].电力科学与技术学报,2024,(3):86-95.
WANG Bingzheng, YUE Yuntao, LI Binghua, et al. Multi‑data prediction method based on GRA/EEMD‑Informer hybrid model for photovoltaic‑storage‑direct‑flexible distribution system[J]. Journal of Electric Power Science and Technology,2024,(3):86-95.

复制
分享
文章指标
  • 点击次数:121
  • 下载次数: 209
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2024-07-25
文章二维码