基于宽频阻抗谱的电缆绝缘水树定位机理及算法研究
CSTR:
作者:
作者单位:

(1.国网河北省电力有限公司电力科学研究院,河北 石家庄 050021;2.天津大学电气自动化与信息工程学院,天津 300072)

通讯作者:

韩 涛(1987—),男,博士,副教授,主要从事电力设备状态监测与评估技术等方面的研究;E?mail:hant@tju.edu.cn

中图分类号:

TM855

基金项目:

河北省自然科学基金(E2021521003);国家电网公司科技项目(kj2021?049)


Mechanism and location algorithm of water tree in cable insulation based on broadband impedance spectrum
Author:
Affiliation:

(1.State Grid Hebei Electric Power Co., Ltd.,Electric Power Research Institute, Shijiazhuang 050021, China;2.School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • | | | |
  • 文章评论
    摘要:

    XLPE配网电缆水树故障频发,对电网的安全运行造成威胁。为研究基于宽频阻抗谱的配网电缆水树定位机理,开展加速水树老化实验并测量水树生长不同阶段的电缆微元参数变化,建立电缆水树截面的有限元模型,仿真验证实验测量结果;确定定位算法中的最佳窗函数及入射波形,优化定位算法并依据实验结果验证算法的有效性。结果表明,水树的生长将造成该区域电导和电容的增加,基于宽频阻抗谱的定位方法对于水树引发的局部电容微小变化较敏感,对电导变化不敏感,电容变化定位图谱为典型的双峰特征,且反射峰值大小与局部电容变化量成正比。

    Abstract:

    The water tree in XLPE distribution network cables is a threat to the power grid. In order to study the location mechanism of water tree based on broadband impedance spectrum, an experiment is carried out to accelerate the water tree, and the changes of cable micro-element parameters in different stages of water tree are measured. Then a finite element model of cable water tree section is established and the experimental measurement results are verified. The optimal window function and incident waveform in the location algorithm are determined to get an optimized location algorithm. After that, the effectiveness of algorithm is verified according to the experimental results. The results show that the growth of water tree will cause the increase of conductance and capacitance. The location method based on broadband impedance spectroscopy is more sensitive to small changes in local capacitance caused by water trees, but not sensitive to changes in conductance. The localization map of capacitance changes is a in typical double peak structure, and the reflection amplitude is proportional to the local capacitance change.

    参考文献
    [1] 邓伟,曲可新,任媛媛,等.芳香族电压稳定剂改善聚乙烯电缆绝缘材料耐电性能的研究进展[J].高压电器,2023,59(12):185-194.DENG Wei,QU Kexin,REN Yuanyuan,et al.Research progress of aromatic voltage stabilizers to improve the electrical resistance performance of polyethylene cable insulation materials[J].High Voltage Apparatus,2023,59(12):185-194.
    [2] 李登淑,王昕,吴健儿,等.基于特征检测量的XLPE电缆绝缘老化寿命预测方法[J].电力科学与技术学报,2022,37(1):168-177. LI Dengshu,WANG Xin,WU Jianer,et al.XLPE cable insulation aging based on feature detection life prediction method[J].Journal of Electric Power Science and Technology,2022,37(1):168-177.
    [3] 沙浩源,郭涛,赵学华,等.基于空间矢量复合判断指标的变电站动力电缆漏电检测算法[J].电力系统保护与控制,2023,51(11):168-176. SHA Haoyuan,GUO Tao,ZHAO Xuehua,et al.Leakage detection algorithm for long-section power cables in substations based on a composite judgment index of space vector[J].Power System Protection and Control,2023,51(11):168-176.
    [4] 闫轰达,李文鹏,张翀,等.500 kV电力电缆用国产交联聚乙烯绝缘材料性能分析[J].中国电力,2023,56(2):86-92. YAN Hongda,LI Wenpeng,ZHANG Chong,et al.Performance analysis of a domestic crosslinked polyethylene insulating material for 500 kV power cable[J].Electric Power,2023,56(2):86-92.
    [5] TAO W B,SONG S Y,ZHANG W,et al.Influence of temperature on the growth characteristics of water tree in XLPE cable[J].The Journal of Engineering,2019,2019(16):1636-1639.
    [6] 赵岩,郑书生.基于损耗电流谐波特征分析的XLPE电缆局部尖刺缺陷诊断[J].电工技术学报,2023,38(21):5725-5737. ZHAO Yan,ZHENG Shusheng.Diagnosis of XLPE cable local tip defects based on analysis of harmonic characteristics of loss current[J].Transactions of China Electrotechnical Society,2023,38(21):5725-5737.
    [7] 聂永杰,王威望,李盛涛,等.基于电流积分技术的XLPE绝缘动态电荷行为和高场电导特性[J].高电压技术,2021,47(8):2971-2980. NIE Yongjie,WANG Weiwang,LI Shengtao,et al.Dynamic charges behavior and high-field conduction characteristics of XLPE insulation based on current integrated charge technique[J].High Voltage Engineering,2021,47(8):2971-2980.
    [8] JUNG W,KIM S,LIM J,et al.A statistical analysis to the VLF Tanδ criteria for aging diagnosis in power cables[J].Journal of the Korean Institute of Electrical and Electronic Material Engineers,2020,33(1):1-5.
    [9] ZHU G Y,ZHOU K,ZHAO S L,et al.A novel oscillation wave test system for partial discharge detection in XLPE cable lines[J].IEEE Transactions on Power Delivery,2020,35(4):1678-1684.
    [10] 刘维功,王昊展,时振堂,等.基于改进XGBoost算法的XLPE电缆局部放电模式识别研究[J].电测与仪表,2022,59(4):98-106. LIU Weigong,WANG Haozhan,SHI Zhentang,et al.Research on partial discharge pattern recognition of XLPE cable based on improved XGBoost algorithm[J].Electrical Measurement & Instrumentation,2022,59(4):98-106.
    [11] ZHOU K,RAO X,CHEN Z,et al.Illuminations to the interface polarization characteristics of water-tree aged cables based on polarization and depolarization current method[C]//2020 IEEE Electrical Insulation Conference (EIC).Knoxville,USA :IEEE,2019.
    [12] SELVAMANY P,VARADARAJAN G S.A Consideration of non-linear dielectric response of water-treed XLPE cable insulation[C]//2021 13th IEEE PES Asia Pacific Power & Energy Engineering Conference (APPEEC).Thiruvananthapuram,India:IEEE,2021:1-5.
    [13] 贾科,施志明,张旸,等.基于电缆早期故障区段定位的柔性直流配电系统保护方法[J].电力系统自动化,2023,47(4):163-171. JIA Ke,SHI Zhiming,ZHANG Yang,et al.Protection method for flexible DC distribution system based on cable incipient fault section location[J].Automation of Electric Power Systems,2023,47(4):163-171.
    [14] 徐明忠,夏荣,欧阳本红,等.基于内置差分电容的电缆接头局放检测技术研究[J].智慧电力,2022,50(7):37-44. XU Mingzhong,XIA Rong,OUYANG Benhong,et al.Cable joint partial discharge detection based on built-in differential capacitance[J].Smart Power,2022,50(7):37-44.
    [15] HIRAI N,YAMADA T,OHKI Y.Comparison of broadband impedance spectroscopy and time domain reflectometry for locating cable degradation[C]//2012 IEEE International Conference on Condition Monitoring and Diagnosis.Bali,Indonesia:IEEE,2012:229-232.
    [16] 钟启迪,蒲莹,孙建锋,等.适用于柔性直流电网的500 kV级直流电缆与架空线路并联运行控制及保护策略[J].电力建设,2022,43(7):80-86. ZHONG Qidi,PU Ying,SUN Jianfeng,et al.Operation control and protection strategy of domestic 500 kV DC cable in flexible DC grid[J].Electric Power Construction,2022,43(7):80-86.
    [17] YAMADA T,HIRAI N,OHKI Y.Improvement in sensitivity of broadband impedance spectroscopy for locating degradation in cable insulation by ascending the measurement frequency[C]//2012 IEEE International Conference on Condition Monitoring and Diagnosis,Bali,Indonesia:IEEE,2012:677-680.
    [18] LI R,ZHOU K,WAN H,et al.Location of cable joints with moisture in medium voltage distribution grid based on frequency domain reflection method[C]//2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE),Beijing,China:EEE,2020:1-4.
    [19] 冯尧,赵鹏,李文杰,等.高压XLPE电缆缓冲层烧蚀故障机理分析与结构优化[J].电力工程技术,2023,42(3):242-249. FENG Yao,ZHAO Peng,LI Wenjie,et al.Ablative fault mechanism analysis and structure improvement of buffer layer of high voltage XLPE cable[J].Electric Power Engineering Technology,2023,42(3):242-249.
    [20] 陈泰龙,马玫,陈少磊,等.基于多尺度优化卷积神经网络的配电网电缆局部放电图像识别[J].供用电,2023,40(11):105-111. CHEN Tailong,MA Mei,CHEN Shaolei,et al.Cable fault diagnosis of distribution network based on multi-scale optimized convolutional neural network[J].Distribution & Utilization,2023,40(11):105-111.
    [21] 张丹丹,郑建康,冯南战,等.基于阻抗谱的同轴电力电缆高频传输特性研究[J].高压电器,2021,57(6):18-23. ZHANG Dandan,ZHENG Jiankang,FENG Nanzhan,et al.Study on high frequency transmission characteristics of coaxial power cable based on impedance spectrum[J].High Voltage Apparatus,2021,57(6):18-23.
    [22] 周志强.基于宽频阻抗谱的电缆局部缺陷诊断方法研究[D].武汉:华中科技大学,2015. ZHOU Zhiqiang.Local defects diagnosis for cable based on broadband impedance spectroscopy[D].Wuhan:Huazhong University of Science and Technology,2015.
    [23] 陶霰韬,李化,方田,等.基于片晶滑移的水树结晶破坏机理[J].电工技术学报,2021,36(12):2640-2649. TAO Xiantao,LI Hua,FANG Tian,et al.Crystalline destruction mechanism caused by water tree based on lamella slip[J].Transactions of China Electrotechnical Society,2021,36(12):2640-2649.
    [24] 周凯,黄科荣,黄明,等.交联聚乙烯电缆绝缘中的水树生长特性[J].高电压技术,2019,45(10):3207-3213. ZHOU Kai,HUANG Kerong,HUANG Ming,et al.Water tree growth characteristics in XLPE power cable insulation[J].High Voltage Engineering,2019,45(10):3207-3213.
    [25] 林涛,翟璐,孙浩飞,等.长距离330 kV交联聚乙烯电缆交接试验研究[J].电网与清洁能源,2022,38(4):28-36. LIN Tao,ZHAI Lu,SUN Haofei,et al.Study on commissioning test of long-distance 330 kV XLPE power cable[J].Power System and Clean Energy,2022,38(4):28-36.
    [26] ZHOU K,HUANG M,TAO W B,et al.A possible water tree initiation mechanism for service-aged XLPE cables:conversion of electrical tree to water tree[J].IEEE Transactions on Dielectrics and Electrical Insulation,2016,23(3):1854-1861.
    相似文献
    引证文献
引用本文

魏力强,苏金刚,韩 涛,等.基于宽频阻抗谱的电缆绝缘水树定位机理及算法研究[J].电力科学与技术学报,2024,(3):125-133.
WEI Liqiang, SU Jingang, HAN Tao, et al. Mechanism and location algorithm of water tree in cable insulation based on broadband impedance spectrum[J]. Journal of Electric Power Science and Technology,2024,(3):125-133.

复制
分享
文章指标
  • 点击次数:120
  • 下载次数: 212
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2024-07-25
文章二维码