基于IMFO‑LSTM模型的光伏功率预测研究
CSTR:
作者:
作者单位:

(1.贵州电网有限责任公司电网规划研究中心,贵州 贵阳 550000;2. 南方电网科学研究院有限责任公司,广东 广州 510663)

作者简介:

通讯作者:

李庆生(1971—),男,高级工程师,主要从事新型电力系统规划、分布式电源研究;E?mail:liqingsheng@gz.csg.cn

中图分类号:

TM615

基金项目:

南方电网科技项目(GZKJXM20200776)


Photovoltaic power prediction based on IMFO‑LSTM model
Author:
Affiliation:

(1.Power Grid Planning Research Center of Guizhou Power Grid Co., Ltd., Guiyang 550000, China;2.Electric Power Research Institute, China Southern Power Grid, Guangzhou 510663, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着光伏发电大容量接入电网,为降低光伏发电输出的随机性,提出一种基于改进飞蛾优化(improved moth?flame optimization,IMFO)的长短期记忆网络(long short?term memory,LSTM)进行光伏发电功率预测。首先,通过数据预处理,进行灰色关联度分析,减少输入变量维数,再根据选取的输入变量,通过灰色关联度分析法,进行相似日样本选取;其次,为提高飞蛾算法的性能,对其位置更新公式进行改进;接着,根据IMFO?LSTM的网络层数和学习率,提高其预测精度,降低随机性;最后,基于预处理好的相似日样本,采用优化后的LSTM进行预测。仿真结果表明:该模型的预测精度得到一定提升,满足实际工程要求。

    Abstract:

    With the large capacity of photovoltaic power generation connected to the grid, in order to reduce the randomness of photovoltaic power generation output, a long short-term memory (LSTM) based on an improved moth-flame optimization (IMFO) algorithm is proposed to predict photovoltaic power generation power. Firstly, through data preprocessing, grey relational analysis is conducted to reduce the dimensionality of input variables. Then, based on the selected input variables, similar-day sample selection is performed using the grey relational analysis method. Secondly, the position update formula are improved to enhance the performance of the moth algorithm. Then, the improved moth algorithm is used in the optimization of the number of network layers and learning rate of the LSTM to improve its prediction accuracy and reduce randomness. Finally, based on the pre-processed samples of similar days, the optimized LSTM is adopted for power prediction. Simulation results show that the prediction accuracy of the model has been improved to a certain extent, which meets the actual engineering requirements.

    参考文献
    相似文献
    引证文献
引用本文

李庆生,张 裕,龙家焕,等.基于IMFO‑LSTM模型的光伏功率预测研究[J].电力科学与技术学报,2024,(3):199-206.
LI Qingsheng, ZHANG Yu, LONG Jiahuan, et al. Photovoltaic power prediction based on IMFO‑LSTM model[J]. Journal of Electric Power Science and Technology,2024,(3):199-206.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-25
  • 出版日期:
文章二维码