基于IMFO‑LSTM模型的光伏功率预测研究
CSTR:
作者:
作者单位:

(1.贵州电网有限责任公司电网规划研究中心,贵州 贵阳 550000;2. 南方电网科学研究院有限责任公司,广东 广州 510663)

通讯作者:

李庆生(1971—),男,高级工程师,主要从事新型电力系统规划、分布式电源研究;E?mail:liqingsheng@gz.csg.cn

中图分类号:

TM615

基金项目:

南方电网科技项目(GZKJXM20200776)


Photovoltaic power prediction based on IMFO‑LSTM model
Author:
Affiliation:

(1.Power Grid Planning Research Center of Guizhou Power Grid Co., Ltd., Guiyang 550000, China;2.Electric Power Research Institute, China Southern Power Grid, Guangzhou 510663, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    随着光伏发电大容量接入电网,为降低光伏发电输出的随机性,提出一种基于改进飞蛾优化(improved moth?flame optimization,IMFO)的长短期记忆网络(long short?term memory,LSTM)进行光伏发电功率预测。首先,通过数据预处理,进行灰色关联度分析,减少输入变量维数,再根据选取的输入变量,通过灰色关联度分析法,进行相似日样本选取;其次,为提高飞蛾算法的性能,对其位置更新公式进行改进;接着,根据IMFO?LSTM的网络层数和学习率,提高其预测精度,降低随机性;最后,基于预处理好的相似日样本,采用优化后的LSTM进行预测。仿真结果表明:该模型的预测精度得到一定提升,满足实际工程要求。

    Abstract:

    With the large capacity of photovoltaic power generation connected to the grid, in order to reduce the randomness of photovoltaic power generation output, a long short-term memory (LSTM) based on an improved moth-flame optimization (IMFO) algorithm is proposed to predict photovoltaic power generation power. Firstly, through data preprocessing, grey relational analysis is conducted to reduce the dimensionality of input variables. Then, based on the selected input variables, similar-day sample selection is performed using the grey relational analysis method. Secondly, the position update formula are improved to enhance the performance of the moth algorithm. Then, the improved moth algorithm is used in the optimization of the number of network layers and learning rate of the LSTM to improve its prediction accuracy and reduce randomness. Finally, based on the pre-processed samples of similar days, the optimized LSTM is adopted for power prediction. Simulation results show that the prediction accuracy of the model has been improved to a certain extent, which meets the actual engineering requirements.

    参考文献
    [1] 张扬科,李刚,李秀峰.基于典型代表电站和改进SVM的区域光伏功率短期预测方法[J].电力自动化设备,2021,41(11):205-210. ZHANG Yangke,LI Gang,LI Xiufeng.Short-term forecasting method for regional photovoltaic power based on typical representative power stations and improved SVM[J].Electric Power Automation Equipment,2021,41(11):205-210.
    [2] 张永蕊,阎洁,林爱美,等.多点数值天气预报风速和辐照度集中式修正方法研究[J].发电技术,2022,43(2):278-286. ZHANG Yongrui,YAN Jie,LIN Aimei,et al.Integrated correction method of multi-point numerical weather prediction wind speed and irradiance[J].Power Generation Technology,2022,43(2):278-286.
    [3] 周步祥,吴晨旭,邱一苇,等.计及光伏出力时序不确定性的电制氢多机集群优化调度[J].电力建设,2023,44(9):108-117. ZHOU Buxiang,WU Chenxu,QIU Yiwei,et al.Optimal scheduling of multi-electrolyzer power-to-hydrogen clusters considering the temporal uncertainty of photovoltaic power[J].Electric Power Construction,2023,44(9):108-117.
    [4] 张旻,李天喆,张容进,等.基于信息融合的动态神经网络光伏功率预测[J].电力科学与技术学报,2020,35(3):68-73. ZHANG Min,LI Tianzhe,ZHANG Rongjin,et al.Photovoltaic power forecasting based on information fusion theory[J].Journal of Electric Power Science and Technology,2020,35(3):68-73.
    [5] KOSTER D,MINETTE F,BRAUN C,et al.Short-term and regionalized photovoltaic power forecasting,enhanced by reference systems,on the example of Luxembourg[J].Renewable Energy,2019,132:455-470.
    [6] 邓韦斯,孟子超,王皓怀,等.新能源功率预测特性分析及精度提升措施[J].南方电网技术,2023,17(2):11-23. DENG Weisi,MENG Zichao,WANG Haohuai,et al.Renewable energy power prediction characteristics analyses and accuracy improvement measures[J].Southern Power System Technology,2023,17(2):11-23.
    [7] 施路炜,徐潇源,严正,等.考虑配电网电压约束的光伏功率升维仿射控制[J].电力系统自动化,2023,47(19):64-73. SHI Luwei,XU Xiaoyuan,YAN Zheng,et al.Dimension-lifting affine control of photovoltaic power considering voltage constraints of distribution network[J].Automation of Electric Power Systems,2023,47(19):64-73.
    [8] 雷柯松,吐松江·卡日,伊力哈木·亚尔买买提,等.基于WGAN-GP和CNN-LSTM-Attention的短期光伏功率预测[J].电力系统保护与控制,2023,51(9):108-118. LEI Kesong,TUSONGJIANG·Kari,YILIHAMU·Yaermaimaiti,et al.Prediction of short-term photovoltaic power based on WGAN-GP and CNN-LSTM-Attention[J].Power System Protection and Control,2023,51(9):108-118.
    [9] 杨海柱,李庆华,张鹏.基于tGSSA-DELM的短期光伏发电功率预测[J].智慧电力,2023,51(10):70-77. YANG Haizhu,LI Qinghua,ZHANG Peng.Short-term photovoltaic power generation prediction based on tGSSA-DELM[J].Smart Power,2023,51(10):70-77.
    [10] 刘晓艳,王珏,姚铁锤,等.基于卫星遥感的超短期分布式光伏功率预测[J].电工技术学报,2022,37(7):1800-1809. LIU Xiaoyan,WANG Jue,YAO Tiechui,et al.Ultra short-term distributed photovoltaic power prediction based on satellite remote sensing[J].Transactions of China Electrotechnical Society,2022,37(7):1800-1809.
    [11] 杨鹏兴,王秀丽,赵兴勇,等.基于深度学习的光伏并网系统谐波预测研究[J].电网与清洁能源,2022,38(7):71-80. YANG Pengxing,WANG Xiuli,ZHAO Xingyong,et al.Research on harmonic prediction of the grid-connected photovoltaic system based on deep learning[J].Power System and Clean Energy,2022,38(7):71-80.
    [12] 李民,杨暑森,李科锋,等.覆雪状态下光伏发电功率预测方法研究[J].高压电器,2023,59(9):250-257. LI Min,YANG Shusen,LI Kefeng,et al.Research on power prediction method of photovoltaic power generation under snow coating conditions[J].High Voltage Apparatus,2023,59(9):250-257.
    [13] 陈瑶,陈晓宁.基于自适应Kmeans和LSTM的短期光伏发电预测[J].电测与仪表,2023,60(7):94-99. CHEN Yao,CHEN Xiaoning.Prediction of short-term photovoltaic power generation based on adaptive Kmeans and LSTM[J].Electrical Measurement & Instrumentation,2023,60(7):94-99.
    [14] OSPINA J,NEWAZ A,FARUQUE M O.Forecasting of PV plant output using hybrid wavelet-based LSTM-DNN structure model[J].IET Renewable Power Generation,2019,13(7):1087-1095.
    [15] 徐一伦,张彬桥,黄婧,等.考虑天气类型和相似日的IWPA-LSSVM光伏发电功率预测[J].中国电力,2023,56(2):143-149. XU Yilun,ZHANG Binqiao,HUANG Jing,et al.Forecast of photovoltaic power based on IWPA-LSSVM considering weather types and similar days[J].Electric Power,2023,56(2):143-149.
    [16] 杨子民,彭小圣,熊予涵,等.计及邻近风电场信息与CNN-BiLSTM的短期风电功率预测[J].南方电网技术,2023,17(2):47-56. YANG Zimin,PENG Xiaosheng,XIONG Yuhan,et al.Short-Term wind power prediction based on information in neighboring wind farms and CNN-BiLSTM[J].Southern Power System Technology,2023,17(2):47-56.
    [17] 吉锌格,李慧,刘思嘉,等.基于MIE-LSTM的短期光伏功率预测[J].电力系统保护与控制,2020,48(7):50-57. JI Xinge,LI Hui,LIU Sijia,et al.Short-term photovoltaic power forecasting based on MIE-LSTM[J].Power System Protection and Control,2020,48(7):50-57.
    [18] 张雲钦,程起泽,蒋文杰,等.基于EMD-PCA-LSTM的光伏功率预测模型[J].太阳能学报,2021,42(9):62-69. ZHANG Yunqin,CHENG Qize,JIANG Wenjie,et al.Photovoltaic power prediction model based on emd-pca-lstm[J].Acta Energiae Solaris Sinica,2021,42(9):62-69.
    [19] 王振浩,王翀,成龙,等.基于集合经验模态分解和深度学习的光伏功率组合预测[J].高电压技术,2022,48(10):4133-4142. WANG Zhenhao,WANG Chong,CHENG Long,et al.Photovoltaic power combined prediction based on ensemble empirical mode decomposition and deep learning[J].High Voltage Engineering,2022,48(10):4133-4142.
    [20] 杨晶显,张帅,刘继春,等.基于VMD和双重注意力机制LSTM的短期光伏功率预测[J].电力系统自动化,2021,45(3):174-182. YANG Jingxian,ZHANG Shuai,LIU Jichun,et al.Short-term photovoltaic power prediction based on variational mode decomposition and long shortterm memory with dual-stage attention mechanism[J].Automation of Electric Power Systems,2021,45(3):174-182.
    [21] 殷豪,张铮,丁伟锋,等.基于生成对抗网络和LSTM-CSO的少样本光伏功率短期预测[J].高电压技术,2022,48(11):4342-4351. YIN Hao,ZHANG Zheng,DING Weifeng,et al.Short-term prediction of small-sample photovoltaic power based on generative adversarial network and LSTM-CSO[J].High Voltage Engineering,2022,48(11):4342-4351.
    [22] 于红伟,许国泽,何旭东,等.基于相似样本和多模型动态最优组合的光伏功率预测[J].电网与清洁能源,2021,37(9):92-99. YU Hongwei,XU Guoze,HE Xudong,et al.Photovoltaic power prediction based on similar samples and dynamic optimal combination of multiple models[J].Power System and Clean Energy,2021,37(9):92-99
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李庆生,张 裕,龙家焕,等.基于IMFO‑LSTM模型的光伏功率预测研究[J].电力科学与技术学报,2024,(3):199-206.
LI Qingsheng, ZHANG Yu, LONG Jiahuan, et al. Photovoltaic power prediction based on IMFO‑LSTM model[J]. Journal of Electric Power Science and Technology,2024,(3):199-206.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2024-07-25
文章二维码