基于滚动采样马尔可夫链模型的光伏时序功率模拟研究
CSTR:
作者:
作者单位:

(1.国网冀北电力有限公司电力科学研究院,北京 100045;2.北京交通大学电气工程学院,北京 100044)

通讯作者:

夏明超(1976—),男,博士,教授,主要从事交通能源融合、配电网优化控制等研究;E?mail:mchxia@bjtu.edu.cn

中图分类号:

TM743

基金项目:

国网冀北电力有限公司科技项目(52018K20007K)


Study on time series power simulation of photovoltaic output based on rolling sampling Markov chain model
Author:
Affiliation:

(1.Electric Power Research Institute of State Grid Jibei Electric Power Co., Ltd., Beijing 100045, China; 2.School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • | | | |
  • 文章评论
    摘要:

    光伏出力的波动性和随机性会给电力系统调度运行的安全性和可靠性带来影响。为了实现对光伏出力长时间尺度的准确模拟,本文提出一种基于马尔可夫链的光伏场站时序功率模拟模型。首先,建立光伏出力模型,并对出力的不确定性和规律性特征进行研究分析;然后,在一阶马尔可夫链模型的基础上考虑相邻日之间的联系,根据季节与天气因素以10 d为一个采样区间对历史数据进行滚动采样,建立多状态转移概率矩阵,构建全年时序出力模拟模型;最后,以某光伏电站全年出力数据与历史气象监测数据为基础,通过实例模拟了全年的出力情况,并与传统方法进行了对比分析。算例结果验证了所提方法的有效性,表明该方法较好地模拟了受季节与天气影响下的光伏出力情况,与历史实际情况更为吻合。

    Abstract:

    The volatility and randomness of photovoltaic (PV) output will affect the security and reliability of power system dispatching operation. In order to accurately simulate the PV output over a long time scale, this paper proposes a time-series power simulation model of PV output based on Markov chain. Firstly, a photovoltaic output model is established, and the uncertainty and regularity characteristics of output are analyzed. Then, considering the output relationship between adjacent days of the year on the basis of the first-order Markov chain model, the historical data is sampled in a rolling way with 10 days as a sampling interval based on the season and weather factors, and a multi-state transition probability matrix is established, and then the annual time series output model is constructed; Finally, based on the output data and the annual historical meteorological monitoring data of a PV plant, the simulation of the annual output is conducted and the results are compared with the traditional methods. The example results verify the effectiveness of the proposed method, which shows that the method can simulate the PV output under the influence of season and weather, and is consistent with the historical actual situation.

    参考文献
    [1] 刘敦楠,李奇,秦丽娟,等.电网多时间尺度接纳可再生能源能力评估指标体系[J].电力建设,2017,38(7):44-50. LIU Dunnan,LI Qi,QIN Lijuan,et al.Evaluation of grid accepting renewable energy in multi-time scale[J].Electric Power Construction,2017,38(7):44-50.
    [2] 丁明,林玉娟,潘浩.考虑负荷与新能源时序特性的随机生产模拟[J].中国电机工程学报,2016,36(23):6305-6314+6595. DING Ming,LIN Yujuan,PAN Hao.Probabilistic production simulation considering time sequence characteristics of load and new energy[J].Proceedings of the CSEE,2016,36(23):6305-6314+6595.
    [3] 左立光,刘洲洲,彭旭.基于时序生产模拟的电网新能源跨区域消纳评估[J].能源与节能,2022(11):33-35+39. ZUO Liguang,LIU Zhouzhou,PENG Xu.Evaluation of cross-regional new energy consumption in power grid based on timing production simulation[J].Energy and Energy Conservation,2022(11):33-35+39.
    [4] 何飞帆,高文根,於跃.基于模糊控制的光伏微电网复合储能控制策略优化研究[J].重庆工商大学学报(自然科学版),2023,40(3):56-63.HE Feifan,GAO Wengen,YU Yue.Research on the composite energy storage control strategy optimization of fuzzy control-based photovoltaic micro-grid[J].Journal of Chongqing Technology and Business University (Natural Science Edition),2023,40(3):56-63.
    [5] 李玉敦,谢开贵.含多个风电场的电力系统可靠性评估[J].电力科学与技术学报,2011,26(1):73-76+103. LI Yudun,XIE Kaigui.Reliability assessment of power systems containing multiple wind farms[J].Journal of Electric Power Science and Technology,2011,26(1):73-76+103.
    [6] 滕贤亮,谈超,昌力,等.高比例新能源电力系统有功功率与频率控制研究综述及展望[J].电力系统自动化,2023,47(15):12-35. TENG Xianliang,TAN Chao,CHANG Li,et al.Review and prospect of research on active power and frequency control in power system with high proportion of renewable energy[J].Automation of Electric Power Systems,2023,47(15):12-35.
    [7] 梁煜东,陈峦,张国洲,等.基于深度强化学习的多能互补发电系统负荷频率控制策略[J].电工技术学报,2022,37(7):1768-1779. LIANG Yudong,CHEN Luan,ZHANG Guozhou,et al.Load frequency control strategy of hybrid power generation system:a deep reinforcement learning—based approach[J].Transactions of China Electrotechnical Society,2022,37(7):1768-1779.
    [8] 韩志永,张宇华,李兵.基于多场景技术的冷热电虚拟电厂两阶段优化调度[J].电测与仪表,2022,59(3):174-180. HAN Zhiyong,ZHANG Yuhua,LI Bing.Two-stage optimal dispatching of CCHP virtual power plant based on multi-scenario technology[J].Electrical Measurement & Instrumentation,2022,59(3):174-180.
    [9] PENG X,GAO G L,HU G G,et al.Research on inter-regional renewable energy accommodation assessment method based on time series production simulation[C]//2019 IEEE Sustainable Power and Energy Conference (iSPEC).Beijing,China.IEEE,2019:2031-2036.
    [10] 朱彦名,徐潇源,严正,等.面向电力物联网的含可再生能源配电网运行展望[J].电力系统保护与控制,2022,50(2):176-187. ZHU Yanming,XU Xiaoyuan,YAN Zheng,et al.Prospect of renewable energy integrated distribution network operation in the power Internet of Things[J].Power System Protection and Control,2022,50(2):176-187.
    [11] 禹海峰,黄婧杰,蒋诗谣,等.计及储能使用年寿命的风电场整体性储能配置[J].电力科学与技术学报,2022,37(4):152-160. YU Haifeng,HUANG Jingjie,JIANG Shiyao,et al.The overall energy storage configuration of wind farms considering the service life of electric energy storage[J].Journal of Electric Power Science and Technology,2022,37(4):152-160.
    [12] 刘纯,屈姬贤,石文辉.基于随机生产模拟的新能源消纳能力评估方法[J].中国电机工程学报,2020,40(10):3134-3144. LIU Chun,QU Jixian,SHI Wenhui.Evaluating method of ability of accommodating renewable energy based on probabilistic production simulation[J].Proceedings of the CSEE,2020,40(10):3134-3144.
    [13] 陈启超,李晖,王帅,等.促进可再生能源消纳的多能互补时序运行模拟技术[J].电力建设,2019,40(7):18-25. CHEN Qichao,LI Hui,WANG Shuai,et al.Sequential operation simulation technology for renewable energy accommodation considering multi-energy complementarity[J].Electric Power Construction,2019,40(7):18-25.
    [14] 梅生伟,王莹莹,刘锋.风—光—储混合电力系统的博弈论规划模型与分析[J].电力系统自动化,2011,35(20):13-19. MEI Shengwei,WANG Yingying,LIU Feng.A game theory based planning model and analysis for hybrid power system with wind generators-photovoltaic panels-storage batteries[J].Automation of Electric Power Systems,2011,35(20):13-19.
    [15] 康俊杰,赵春阳,周国鹏,等.风光水火储多能互补示范项目发展现状及实施路径研究[J].发电技术,2023,44(3):407-416. KANG Junjie,ZHAO Chunyang,ZHOU Guopeng,et al.Research on development status and implementation path of wind-solar-water-thermal-energy storage multi-energy complementary demonstration project[J].Power Generation Technology,2023,44(3):407-416.
    [16] 王吉利,薛飞,黄玉雄,等.数据驱动的区域电网新能源消纳受阻因素智能辨识方法[J].智慧电力,2022,50(10):95-101. WANG Jili,XUE Fei,HUANG Yuxiong,et al.Data-driven intelligent identification method of hindering factors for renewable energy consumption in regional power grids[J].Smart Power,2022,50(10):95-101.
    [17] 魏韡,范越,谢睿,等.平抑高比例新能源发电功率波动的风—光—储容量最优配比[J].电力建设,2023,44(3):138-147. WEI Wei,FAN Yue,XIE Rui,et al.Optimal ratio of wind-solar-storage capacity for mitigating the power fluctuations in power system with high penetration of renewable energy power generation[J].Electric Power Construction,2023,44(3):138-147.
    [18] 古宸嘉,王建学,李清涛,张耀.新能源集中并网下大规模集中式储能规划研究述评[J].中国电力,2022,55(1):2-12+83. GU Chenjia,WANG Jianxue,LI Qingtao,et al.Review on large-scale centralized energy storage planning under centralized grid integration of renewable energy[J].Electric Power,2022,55(1):2-12+83.
    [19] 刘震,郑文聪.基于典型日法的微电网可靠性评估[J].通信电源技术,2018,35(3):11-13. LIU Zhen,ZHENG Wencong.Reliability evaluation of microgrid based on typical daily method[J].Telecom Power Technology,2018,35(3):11-13.
    [20] 石蓉,王雪妍,陆鑫,等.基于改进聚类算法的清洁能源互联网源网荷储协调控制研究[J].电网与清洁能源,2023,39(7):134-139+146. SHI Rong,WANG Xueyan,LU Xin,et al.A study on the load and storage coordination control of clean energy Internet source network based on improved clustering algorithm[J].Power System and Clean Energy,2023,39(7):134-139+146.
    [21] 姚剑峰,凌静,曲立楠,等.基于改进FCM聚类算法的清洁能源典型场景构建[J].电网与清洁能源,2019,35(4):76-82. YAO Jianfeng,LING Jing,QU Linan,et al.The construction method of typical scenario set for renewable energy based on improved FCM clustering algorithm[J].Power System and Clean Energy,2019,35(4):76-82.
    [22] 贾冉冉.改进的谱聚类算法研究及其在物流配送中的应用[D].青岛:山东科技大学,2018. JIA Ranran.Research on improved spectral clustering algorithm and its application in logistics distribution[D].Qingdao:Shandong University of Science and Technology,2018.
    [23] 彭旭.基于时序生产模拟的新能源消纳评估方法研究[D].西安:西安理工大学,2019. PENG Xu.Research on evaluation method of new energy absorption based on time series production simulation[D].Xi’an:Xi’an University of Technology,2019.
    [24] 席星璇.基于时序生产模拟的吉林省新能源并网系统成本研究[D].北京:华北电力大学,2021. XI Xingxuan.Research on the cost of new energy grid-connected system in Jilin Province based on time series production simulation[D].Beijing:North China Electric Power University,2021.
    [25] 张军,许晓艳,黄永宁,等.基于时序生产模拟仿真的宁夏电网风光优化配比研究[J].电力系统保护与控制,2014,42(19):81-86. ZHANG Jun,XU Xiaoyan,HUANG Yongning,et al.Optimal proportion study of wind and PV capacity in Ningxia power grid based on time sequence simulation[J].Power System Protection and Control,2014,42(19):81-86.
    [26] 吴冠男,张明理,徐建源,等.适用于评估风电接纳能力的时序生产模拟算法研究[J].电力系统保护与控制,2017,45(23):151-157. WU Guannan,ZHANG Mingli,XU Jianyuan,et al.Time series production algorithm for evaluating wind power accommodation capacity[J].Power System Protection and Control,2017,45(23):151-157.
    [27] 张秉良,张博颐,吴耀武,等.基于随机生产模拟的风电场容量及电量效益[J].中国电力,2013,46(8):74-79. ZHANG Bingliang,ZHANG Boyi,WU Yaowu,et al.An approach to evaluate the capacity benefits and energy benefits of wind farms based on probabilistic product simulation[J].Electric Power,2013,46(8):74-79.
    [28] 张家安,王琨玥,陈建,等.基于空间相关性的分布式光伏出力预测[J].电力建设,2020,41(3):47-53. ZHANG Jia’an,WANG Kunyue,CHEN Jian,et al.Research on prediction of distributed photovoltaic output considering spatial relevance[J].Electric Power Construction,2020,41(3):47-53.
    [29] 张智勤.含新能源电力系统的随机生产模拟及评估[D].北京:华北电力大学,2017. ZHANG Zhiqin.Stochastic production simulation and evaluation of power system with new energy sources[D].Beijing:North China Electric Power University,2017.
    [30] 方保民,李红志,孔祥鹏,等.含高比例光伏出力的长期分布式储能配置研究[J].电力系统保护与控制,2021,49(2):121-129. FANG Baomin,LI Hongzhi,KONG Xiangpeng,et al.Research on long-term distributed energy storage configuration with a high proportion of photovoltaic output[J].Power System Protection and Control,2021,49(2):121-129.
    [31] 徐杉杉,朱俊澎,袁越,等.基于马尔可夫模型的光伏出力聚类与模拟[J].电力建设,2019,40(2):54-62. XU Shanshan,ZHU Junpeng,YUAN Yue,et al.Clustering and simulation of photovoltaic output adopting Markov model[J].Electric Power Construction,2019,40(2):54-62.
    [32] LI Y Z,NIU J C,LUAN R,et al.Research of multi-power structure optimization for grid-connected photovoltaic system based on Markov decision-making model[C]//International Conference on Electrical Machines and Systems.Wuhan,China,2008:2607-2610.
    [33] LI Y Z,LUAN R,NIU J C.Forecast of power generation for grid-connected photovoltaic system based on grey model and Markov chain[C]//2008 3rd IEEE Conference on Industrial Electronics and Applications.Singapore.IEEE,2008:1729-1733.
    [34] 丁明,徐宁舟.基于马尔可夫链的光伏发电系统输出功率短期预测方法[J].电网技术,2011,35(1):152-157. DING Ming,XU Ningzhou.A method to forecast short-term output power of photovoltaic generation system based on Markov chain[J].Power System Technology,2011,35(1):152-157.
    [35] ZHU C X,ZHANG Y,YAN Z,et al.A nested MCMC method incorporated with atmospheric process decomposition for photovoltaic power simulation[J].IEEE Transactions on Sustainable Energy,2020,11(4):2972-2984.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘 迪,吴林林,巩 宇,等.基于滚动采样马尔可夫链模型的光伏时序功率模拟研究[J].电力科学与技术学报,2024,(3):207-216.
LIU Di, WU Linlin, GONG Yu, et al. Study on time series power simulation of photovoltaic output based on rolling sampling Markov chain model[J]. Journal of Electric Power Science and Technology,2024,(3):207-216.

复制
分享
文章指标
  • 点击次数:125
  • 下载次数: 201
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2024-07-25
文章二维码