基于GA‑BP模型的大型接地网腐蚀速率预测方法
CSTR:
作者:
作者单位:

(1.五凌电力有限公司,湖南 长沙 410076;2.长沙理工大学电气与信息工程学院,湖南 长沙 410114)

作者简介:

通讯作者:

梁 峰(1995—),男,硕士研究生,主要从事电力设备状态评价和接地网状态评估与检测方面的研究;E?mail:792710378@qq.com

中图分类号:

TM862

基金项目:

国家自然科学基金(52177015);国家电投集团湖南五凌电力工程有限公司科技项目(320121SC0420220001)


Prediction method of corrosion rate of large‑scale grounding grid based on GA‑optimized BP neural network
Author:
Affiliation:

(1.Wuling Power Co., Ltd., Changsha 410076, China; 2.School of Electrical & Information Engineering, Changsha University of Science & Technology, Changsha 410114, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    接地网腐蚀速率是接地网腐蚀状态评估的一个重要方面。人工智能算法模型可以很好地预测接地网腐蚀速率,针对目前预测模型中特征输入量选取不够全面的问题,在对接地网进行电网络理论分析的基础上,确定接地网腐蚀采样点,提出以土壤理化性质和接地网电阻平均增长率为预测模型的特征输入量,采用遗传算法(genetic algorithm,GA)优化反向传播(back propagation,BP)神经网络,建立接地网腐蚀速率预测模型。将所提模型预测结果与未优化的BP神经网络模型和采用果蝇优化算法(fruit fly optimization algorithm,FOA)优化BP神经网络模型对比。在BP神经网络模型预测精度方面,GA算法相比于FOA算法,RMSE和MAPE值分别提高5.88%和1.5%,相比未经优化的BP神经网络模型,RMSE和MAPE值提高22.01%和4.96%。由此可见,提出的方法有更好的适用性。

    Abstract:

    The corrosion rate of grounding grid is an important aspect of corrosion state evaluation. The artificial intelligence algorithm model can predict the corrosion rate of the grounding grid well. In view of the problem that the selection of the characteristic input in the current prediction model is not comprehensive enough, based on the theoretical analysis of the grounding grid, the corrosion sampling point of the grounding grid is determined. The physical and chemical properties of the soil and the average growth rate of the grounding grid resistance are proposed as the characteristic input of the prediction model. The genetic algorithm (GA) is used to optimize the back propagation (BP) neural network, and the prediction model of the corrosion rate of the grounding grid is established. Compared with the unoptimized BP neural network model and the BP neural network model optimized by fruit fly optimization algorithm (FOA), the prediction performance of the proposed model is better and has better applicability.

    参考文献
    相似文献
    引证文献
引用本文

彭威龙,曾松梧,张宝庆,等.基于GA‑BP模型的大型接地网腐蚀速率预测方法[J].电力科学与技术学报,2024,(3):264-270.
PENG Weilong, ZENG Songwu, ZHANG Baoqing, et al. Prediction method of corrosion rate of large‑scale grounding grid based on GA‑optimized BP neural network[J]. Journal of Electric Power Science and Technology,2024,(3):264-270.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-25
  • 出版日期:
文章二维码