FDIA‑蠕虫混合攻击下的配电网信息物理系统弹性拓扑优化配置
CSTR:
作者:
作者单位:

(1.国网河北省电力有限公司电力科学研究院,河北 石家庄 050021;2.燕山大学电气工程学院河北省电力电子节能与传动控制重点实验室,河北 秦皇岛 066004)

通讯作者:

卢志刚(1963—),男,博士,教授,主要从事电力系统优化运行与控制的研究;E?mail:zhglu@ysu.edu.cn

中图分类号:

TM863

基金项目:

国网河北省电力有限公司科技项目(TSS2021?09)


Resilient topology optimization on cyber‑physical system of distribution networks under FDIA‑Worm hybrid attacks
Author:
Affiliation:

(1.Electric Power Research Institute, Shijiazhuang, State Grid Hebei Electric Power Co.,Ltd.,Shijiazhuang 050021,China; 2. Key Lab of Power Electronics for Energy Conservation and Motor Drive of Hebei Province, Yanshan University, Qinhuangdao 066004,China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • | | | |
  • 文章评论
    摘要:

    电力安全是现代社会持续发展的重要保障。随着信息技术逐步发展,网络攻击手段的日渐增多和变强会对新型电力系统造成严重破坏,而合理的网络拓扑结构和有效的网络防御资源的是电力系统遭受网络攻击后负荷恢复的关键。为此,提出一种虚假数据注入(false data injection attack,FDIA)?蠕虫混合攻击下的配电网信息物理系统(cyber?physical systems,CPS)弹性拓扑优化和防御资源配置策略,用于提高配电系统网络攻击下的弹性。该模型采用上、中、下3层的框架对拓扑结构和防御资源进行优化:上层建立以规划成本和失负荷风险为目标的多目标帕累托规划模型,结合中层计及攻击与恢复的网络攻击传播模型,采用非支配排序遗传算法?II(non?dominated sorting genetic algorithm II,NSGA?II)进行规划方案求解;下层考虑信息层与物理层的多种耦合方案,基于配电网CPS弹性度量指标对拓扑优化配置进行评估。与传统的一对一串联模式方案相比,通过模型求解的3种耦合关系下的网络拓扑结构与防御资源优化方案,在提高系统弹性方面能够发挥重要作用。

    Abstract:

    Power security is a crucial guarantee for the sustainable development of modern society. With the gradual development of information technology, the increasing number and strength of cyber attack methods can cause severe damage to new power systems. Reasonable network topology and effective network defense resources are key to load recovery after a power system suffers a cyber attack. Therefore, a strategy for resilient topology optimization and defense resource allocation of the cyber-physical system (CPS) of distribution networks under FDIA-Worm hybrid attacks is proposed to enhance the resilience of distribution systems against cyber attacks. This model adopts a three-tier framework of upper, middle, and lower levels to optimize the topology and defense resources: the upper level establishes a multi-objective Pareto planning model with planning costs and load loss risks as objectives, combines it with the middle-level network attack propagation model that considers attacks and recovery, and uses the non-dominated sorting genetic algorithm II (NSGA-II) to solve the planning scheme; the lower level considers various coupling schemes between the information layer and the physical layer, and evaluates the optimal topology configuration based on resilience metrics of the CPS of distribution networks. Compared with traditional one-to-one series mode schemes, the optimized network topology and defense resource schemes under the three coupling relationships obtained through model solution can play a significant role in enhancing system resilience.

    参考文献
    [1] 秦博雅,刘东.电网信息物理系统分析与控制的研究进展与展望[J].中国电机工程学报,2020,40(18): 5816-5827. QIN Boya,LIU Dong.Research progresses and prospects on analysis and control of cyber-physical system for power grid[J].Proceedings of the CSEE,2020,40(18): 5816-5826.
    [2] FALAHATI B,FU Y,WU L.Reliability assessment of smart grid considering direct cyber-power interdependencies[J].IEEE Transactions on Smart Grid,2012,3(3):1515-1524.
    [3] 吕华辉,杨航,林志达,等.交直流混联电网信息多协议安全认证集成技术研究[J].电网与清洁能源,2023,39(1):64-69.Lü Huahui,YANG Hang,LIN Zhida,et al. Research on information multi-protocol security authentication integration technology of the AC/DC hybrid power grid[J].Power System and Clean Energy,2023,39(1):64-69.
    [4] TANG Y,CHEN Q,LI M,et al.Challenge and evolution of cyber attacks in cyber physical power system[C]//IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC),Xi'an,China,2016.
    [5] KARNOUSKOS S.Stuxnet worm impact on industrial cyber-physical system security[C]//37th Annual Conference of the IEEE Industrial Electronics Society(IECON),Melbourne,VIC,Australia,2011.
    [6] 郭庆来,辛蜀骏,王剑辉,等.由乌克兰停电事件看信息能源系统综合安全评估[J].电力系统自动化,2016,40(5): 145-147. GUO Qinglai,XIN Shujun,WANG Jianhui,et al.Comprehensive security assessment for a cyber physical energy system: a lesson from Ukraine's blackout[J].Automation of Electric Power Systems,2016,40(5):145-147.
    [7] ZHOU X,YANG Z,NI M,et al.Analysis of the impact of combined information-physical-failure on distribution network CPS[J].IEEE Access,2020,8: 44140-44152.
    [8] 别朝红,林雁翎,邱爱慈.弹性电网及其恢复力的基本概念与研究展望[J].电力系统自动化,2015,39(22):1-9. BIE Zhaohong,LIN Yanling,QIU Aici.Concept and research prospects of power system resilience[J].Automation of Electric Power Systems,2015,39(22):1-9.
    [9] 别朝红,林超凡,李更丰,等.能源转型下弹性电力系统的发展与展望[J].中国电机工程学报,2020,40(9): 2735-2745. BIE Zhaohong,LIN Chaofan,LI Gengfeng,et al.Development and prospect of resilient power system in the context of energy transition[J].Proceedings of the CSEE,2020,40(9): 2735-2745.
    [10] 阮前途,谢伟,许寅,等.韧性电网的概念与关键特征[J].中国电机工程学报,2020,40(21):6773-6784. RUAN Qiantu,XIE Wei,XU Yin,et al.Concept and key features of resilient power grids[J].Proceedings of the CSEE,2020,40(21):6773-6784.
    [11] 陈玥,李力,孙少华,等.弹性电力系统灾害防御及快速恢复智能调度平台设计与实现[J].智慧电力,2023,51(8):38-45. CHEN Yue,LI Li,SUN Shaohua,et al.Design and implementation of intelligent dispatching platform for disaster prevention and rapid recovery in resilient power system[J].Smart Power,2023,51(8):38-45.
    [12] BRUNEAU M,REINHORN A.Exploring the concept of seismic resilience for acute care facilities[J].Earthquake Spectra,2007,23(1):41-62.
    [13] PANTELI M,MANCARELLA P,TRAKAS D,et al.Metrics and quantification of operational and infrastructure resilience in power systems[J].IEEE Transactions on Power Systems,2017,32(6):4732-4742.
    [14] OUYANG M,DUE?AS-OSORIO L.Multi-dimensional hurricane resilience assessment of electric power systems[J].Structural Safety,2014,48:15-24.
    [15] LUO F,ZHANG T,WEI W,et al.A coordinative planning framework for cyber-power distribution system[C]//IEEE Power and Energy Society General Meeting (PESGM),Boston,MA,USA,2016.
    [16] LIU W,CHEN Y,WANG L,et al.An integrated planning approach for distributed generation interconnection in cyber physical active distribution systems[J].IEEE Transactions on Smart Grid,2020,11(1):541-554.
    [17] 张博,唐巍,蔡永翔,等.面向高比例户用光伏消纳的储能系统与通信网络协同规划[J].电网技术,2018,42(10): 3161-3169. ZHANG Bo,TANG Wei,CAI Yongxiang,et al.Collaborative configuration of energy storage systems and communication networks for accommodation of high-penetration residential PVs[J].Power System Technology,2018,42(10): 3161-3169.
    [18] 朱晓荣,司羽.考虑物理—信息—交通网耦合的配电网多时段动态供电恢复策略[J].电工技术学报,2023,38(12):3306-3320. ZHU Xiaorong, SI Yu.Multi-period dynamic power supply restoration strategy considering physical-cyber-traffic network coupling[J]. Transactions of China Electrotechnical Society,2023,38(12):3306-3320.
    [19] 张艺伟,刘文霞,张帅,等.考虑极端场景的输电-通信网络协同鲁棒扩展规划方法[J].电力建设, 2022,43(10):121-135. ZHANG Yiwei, LIU Wenxia, ZHANG Shuai, et al. Joint robust expansion planning of transmission network and communication network considering extreme scenarios[J]. Electric Power Construction, 2022,43(10):121-135.
    [20] 杨挺,黄志勇,盆海波,等.基于拓扑势均衡的配电网信息物理系统规划算法[J].电网技术,2017,41(12): 3988-3995. YANG Ting,HUANG Zhiyong,PEN Haibo,et al.Planning algorithm of cyber physical system for distribution networks based on topological potential equilibrium[J].Power System Technology ,2017,41(12): 3988-3995.
    [21] WU Y,CHEN J,RU Y,et al.Research on power communication network planning based on information transmission reachability against cyber-attacks[J].IEEE Systems Journal,2021,15(2): 2883-2894.
    [22] BESSANI M,FANUCCHI R Z,ACHCAR J A,et al.A statistical analysis and modeling of repair data from a Brazilian power distribution system[C]//17th International Conference on Harmonics and Quality of Power (ICHQP),Belo Horizonte,Brazil,2016.
    [23] 栗会峰.论文附录[EB/OL].https://pan.baidu.com/s/1BCseJ0AivJUiBf7prtdoIg (提取码:asdf),2024-07-15. LI Huifeng.Appendix to the paper[EB/OL].https://pan.baidu.com/s/1BCseJ0AivJUiBf7prtdoIg(extraction code: asdf),2024-07-15.
    [24] LINS I D,RêGO L C,MOURA M D C,et al.Selection of security system design via games of imperfect information and multi-objective genetic algorithm[J].Reliability Engineering & System Safety,2013,112: 59-66.
    [25] DEB K,PRATAP A,AGARWAL S,et al.A fast and elitist multiobjective genetic algorithm: NSGA-II[J].IEEE Transactions on Evolutionary Computation,2002,6(2): 182-197.
    [26] 张育颖,谢品杰.基于NSGA-Ⅱ算法的互补能源接入方案优化配置[J].电力科学与技术学报,2021,36(5): 153-160. ZHANG Yuying,XIE Pinjie.Research on multi-energy supplement system optimization method based on NSGA-II[J].Journal of Electric Power Science and Technology,2021,36(5): 153-160.
    [27] 蔡晔,汤丽,唐夏菲,等.基于NSGA-Ⅱ的电力信息物理系统骨干网络辨识[J].电力系统自动化,2023,47(12):38-46. CAI Ye,TANG Li,TANG Xiafei,et al.Backbone network identification of cyber-physical power system based on non-dominated sorting genetic algorithm?Ⅱ[J].Automation of Electric Power Systems,2023,47(12):38-46.
    [28] 曹一家,张宇栋,包哲静.电力系统和通信网络交互影响下的连锁故障分析[J].电力自动化设备,2013,33(1):7-11. CAO Yijia,ZHANG Yudong,BAO Zhejing.Analysis of cascading failures under interactions between power grid and communication network[J].Electric Power Automation Equipment,2013,33(1):7-11.
    [29] 陈倩,王维庆,王海云.基于需求侧响应的主动配电网双层优化方法[J].电力系统保护与控制,2022,50(16):1-13. CHEN Qian,WANG Weiqing,WANG Haiyun.Bi-level optimization model of an active distribution network based on demand response[J].Power System Protection and Control,2022,50(16):1-13.
    [30] JIANG R,CI S,LIU D,et al.A hybrid multi-objective optimization method based on NSGA-II algorithm and entropy weighted TOPSIS for lightweight design of dump truck carriage[J].Machines,2021,9(8): 156.
    [31] 沈国辉,陈光,赵宇,等.基于双目标分层优化和TOPSIS排序的电动汽车有序充电策略[J].电力系统保护与控制,2021,49(11):115-123. SHEN Guohui,CHEN Guang,ZHAO Yu,et al.Orderly charging optimization strategy of an electric vehicle based on double objective hierarchical optimization and TOPSIS ranking[J].Power System Protection and Control,2021,49(11):115-123.
    [32] 肖丽,谢尧平,胡华锋,等.基于V2G的电动汽车充放电双层优化调度策略[J].高压电器,2022,58(5):164-171. XIAO Li,XIE Yaoping,HU Huafeng,et al.Two-level optimization scheduling strategy for EV′s charging and discharging based on V2G[J].High Voltage Apparatus,2022,58(5):164-171.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

栗会峰,李铁成,李均强,等. FDIA‑蠕虫混合攻击下的配电网信息物理系统弹性拓扑优化配置[J].电力科学与技术学报,2024,39(4):20-32.
LI Huifeng, LI Tiecheng, LI Junqiang, et al. Resilient topology optimization on cyber‑physical system of distribution networks under FDIA‑Worm hybrid attacks[J]. Journal of Electric Power Science and Technology,2024,39(4):20-32.

复制
分享
文章指标
  • 点击次数:108
  • 下载次数: 790
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2024-09-10
文章二维码