基于IHHO‑HKELM输电线路覆冰预测模型
CSTR:
作者:
作者单位:

(1.三峡大学电气与新能源学院,湖北 宜昌 443002;2.国网湖北省电力有限公司随州供电公司,湖北 随州 441300;3.国网湖北省电力有限公司荆门供电公司,湖北 荆门 448000;4.国网湖北省电力有限公司十堰供电公司,湖北 十堰 442000;5.国网湖北省电力有限公司荆州供电公司,湖北 荆州 434000)

通讯作者:

黄 力(1980—),博士,讲师,主要从事输电线路在线监测技术的研究;E?mail:1472509309@qq.com

中图分类号:

TM863

基金项目:

国家自然科学基金(61876097);湖北省输电线路工程技术研究中心(三峡大学)开放基金(2019KXL05)


Icing prediction model of transmission line based on IHHO‑HKELM
Author:
Affiliation:

(1.College of Electrical and New Energy,China Three Gorges University,Yichang 443002,China;2.Suizhou Power Supply Company,State Grid Hubei Electric Power Co.,Ltd., Suizhou 441300,China;3.Jingmen Power Supply Company,State Grid Hubei Electric Power Co.,Ltd.,Jingmen 448000,China;4.Shiyan Power Supply Company,State Grid Hubei Electric Power Co.,Ltd., Shiyan 442000,China;5.Jingzhou Power Supply Company,State Grid Hubei Electric Power Co.,Ltd., Jingzhou 434000,China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • | | | |
  • 文章评论
    摘要:

    为了进一步提高输电线路覆冰预测精度,提出一种基于改进哈里斯鹰算法(improved harris hawk optimization,IHHO)优化混合核极限学习机(hybrid kernel extreme learning machine,HKELM)的输电线路覆冰预测模型。在核极限学习机(KELM)中引入混合核函数,形成HKELM,利用黄金正弦、非线性递减能量指数和高斯随机游走等策略对IHHO算法进行改进;以IHHO算法的优化性能采用其对HKELM的权值向量和核参数进行优化,建立基于IHHO?HKELM的输电线路覆冰预测模型,并通过计算气象因素与覆冰厚度之间的灰色关联度确定覆冰预测模型的输入量。算例分析结果表明,IHHO?HKELM模型预测结果的均方误差、最大误差和平均相对误差分别为0.285、0.860 mm和2.83%,预测效果好于其他模型,将本文覆冰预测模型应用于其他覆冰线路,可获得良好的应用效果并验证模型的优越性和实用性。

    Abstract:

    To further improve the accuracy of transmission line icing prediction, a prediction model based on an improved Harris hawks optimization(IHHO) algorithm optimizing hybrid kernel extreme learning machine(HKELM) is proposed. The hybrid kernel function is introduced into the kernel extreme learning machine to form HKELM. The IHHO algorithm is improved by strategies such as golden sine, nonlinear decreasing inertia weight, and Gaussian random walk. The IHHO algorithm is then utilized to optimize the weight vector and kernel parameters of HKELM, establishing a transmission line icing prediction model based on IHHO-HKELM. The input variables of the icing prediction model are determined by calculating the grey relational grade between meteorological factors and icing thickness. The results of case studies show that the mean square error, maximum error, and average relative error of the IHHO-HKELM model are 0.285, 0.860 mm, and 2.83%, respectively. The prediction effect is better than other models. Applying the icing prediction model in this paper to other icing lines can achieve good application effects and verify the superiority and practicality of the model.

    参考文献
    [1] 吴建蓉,姜苏,黄欢,等.不同电压等级直线塔线路覆冰拉力值预警模型及核密度概率估计研究[J].电瓷避雷器,2022(5):199-204. WU Jianrong,JIANG Su,HUANG Huan,et al.Early Warning model and kernel density probability estimation of ice covering tension values for linear tower lines with different voltage levels[J].Insulators and Surge Arresters,2022(5): 199-204.
    [2] 徐伟进,徐炜彬,王贺冉,等.基于多信息融合的架空输电线路覆冰舞动预测方法[J].电工电气,2022(10):26-29+72. XU Weijin,XU Weibin,WANG Helan,et al.Prediction method of icing galloping of overhead transmission line based on multi-information fusion[J].Electrotechnics Electric,2022(10): 26-29+72.
    [3] 谢庆,张煊宇,王春鑫,等.新一代人工智能技术在输变电设备状态评估中的应用现状及展望[J].高压电器,2022,58(11):1-16. XIE Qing,ZHANG Xuanyu,WANG Chunxin,et al.Application status and prospect of the new generation artificial intelligence technology in the state evaluation of power transmission and transformation equipment[J].High Voltage Apparatus,2022,58(11):1-16.
    [4] 董昱,梁志峰,王上行,等.新型电力系统下推动储能与新能源协调有序发展的分析与思考[J].供用电,2022,39(10):84-92. DONG Yu,LIANG Zhifeng,WANG Shangxing,et al.Analysis and thinking on promoting coordinated and orderly development of energy storage and new energy under new power system[J].Distribution & Utilization,2022,39 (10):84-92.
    [5] 胡京,邓颖,蒋兴良,等.输电线路覆冰垭口微地形的特征提取与识别方法[J].中国电力,2022,55(8):135-142. HU Jing,DENG Ying,JIANG Xingliang,et al.Feature extraction and identification method of ice-covered saddle mircotopography for transmission lines[J].Electric Power,2022,55(8):135-142.
    [6] 杨知,赵彬,李闯,等.基于星地融合的输电线路覆冰预警优化方法研究[J].电测与仪表,2022,59(11):54-62. YANG Zhi,ZHAO Bin,LI Chuang,et al.Study on optimization method of transmission line icing prediction based on satellite-ground fusion[J].Electrical Measurement & Instrumentation,2022,59(11):54-62.
    [7] 李学军,胡安龙,薛国斌,等.基于改进隐马尔可夫模型的输电线路覆冰厚度概率预测[J].西安理工大学学报,2023,39(4):586-594. LI Xuejun,HU Anlong,XUE Guobin,et al.Probabilistic icing prediction of transmission lines based on improved hidden Markov model[J].Journal of Xi'an Universityof Technology,2023,39(4):586-594.
    [8] 徐志钮,李先锋,郭一帆,等.基于温度滞后相位的输电线路覆冰监测方法[J].电力工程技术,2022,41(6):91-100. XU Zhiniu,LI Xianfeng,GUO Yifan,et al.Icing monitoring method of transmission lines based on temperature lagging phase[J].Electric Power Engineering Technology,2022,41(6):91-100.
    [9] 孟遂民.架空输电线路设计[M].北京:中国电力出版社,2015:45-50. MENG Suimin.Design of overhead transmission lines[M].Beijing:China Power Publishing House,2015:45-50.
    [10] 何伟明,唐翀,黄绍川,等.复杂物理环境下基于DOFS的输电线路覆冰监测分析[J].广东电力,2021,34(6):127-136. HE Weiming,TANG Chong,HUANG Shaochuan,et al.Analysis of transmission line icing monitoring based on DOFS in complex physical environment[J].Guangdong Electric Power,2021,34 (6): 127-136.
    [11] 单节杉,任敏,田鑫萃,等.基于故障电流回路特性的柔性直流架空线路纵联保护[J].电力系统自动化,2022,46(21):152-159. SHAN Jieshan,REN Min,TIAN Xincui,et al.Pilot protection of flexible DC overhead line based on characteristics of fault current loop[J].Automation of Electric Power Systems,2022,46(21):152-159.
    [12] 韩兴波,吴海涛,郭思华,等.输电线路单导线覆冰和扭转的相互影响机制分析[J].电工技术学报,2022,37(17):4508-4516. HAN Xingbo,WU Haitao,GUO Sihua,et al.Analysis of interaction mechanism between icing and torsion of single transmission lines[J].Transactions of China Electrotechnical Society,2022,37(17):4508-4516.
    [13] 于童,李英娜.物理引导的SSA-BiGRU输电线路覆冰厚度预测模型[J].电力科学与工程,2022,38(2):28-36. YU Tong,LI Yingna.Prediction model used physics guided SSA-BiGRU for icing thickness of transmission lines[J].Electric Power Science and Engineering,2022,38 (2): 28-36.
    [14] 汪晗,李启迪,黄治翰,等.基于WPA优化LSSVM的输电线路覆冰厚度预测[J].东北电力技术,2022,43(2):42-46. WANG Han,LI Qidi,HUANG Zhihan,et al.Prediction of transmission line icing thickness based on LSSVM optimized by WPA[J].Northeast Electric Power Technology,2022,43 (2): 42-46.
    [15] 王建,姚江宁,刘泽青,等.恶劣天气下配电网故障统计分析及其概率分布拟合[J].电力系统保护与控制,2022,50(17):143-153. WANG Jian,YAO Jiangning,LIU Zeqing,et al.Fault statistical analysis and probability distribution fitting for a power distribution network in adverse weather conditions[J].Power System Protection and Control,2022,50(17):143-153.
    [16] 杨加伦,夏令志,操松元,等.基于特定重现期的电网舞动区域分布图绘制方法[J].电网与清洁能源,2022,38(5):79-85+94. YANG Jialun,XIA Lingzhi,CAO Songyuan,et al.Conductor galloping distribution map developed based on specific recurrence period[J].Power System and Clean Energy,2022,38(5):79-85+94.
    [17] 罗聪,范力栋,赵学文,等.基于VMD-IGWO-LSSVM的覆冰预测模型研究[J].电网与清洁能源,2021,37(6):9-17. LUO Cong,FAN Lidong,ZHAO Xuewen,et al.Research on ice coating prediction model based on VMD-IGWO-LSSVM[J].Power Power System and Clean Energy,2021,37(6):9-17.
    [18] 刘闯,何沁鸿,卢银均,等.输电线路PSOEM-LSSVM覆冰预测模型[J].电力科学与技术学报,2020,35(6):131-137. LIU Chuang,HE Qinhong,LU Yinjun,et al.PSOEM-LSSVM forecasting model for the transmission line icing[J].Journal of Electric Power Science and Technology,2020,35(6):131-137.
    [19] 李贤初,张翕,刘杰,等.输电线路导线覆冰AMPSO-BP神经网络预测模型[J].电力建设,2021,42(9):140-146. LI Xianchu,ZHANG Xi,LIU Jie,et al.Prediction of Transmission line icing thickness applying AMPSO-BP neural network model[J].Electric Power Construction,2021,42(9):140-146.
    [20] 李波,李鹏,高莲,等.基于PCA-VMD-CNN的输电线路覆冰重量预测模型[J].中国安全生产科学技术,2022,18(10):216-222. LI Bo,LI Peng,GAO Lian,et al.Prediction model for weight of icing coating transmission line based on PCA-VMD-CNN[J].Journal of Safety Science and Technology,2022,18(10):216-222.
    [21] 韦权,汤占军.基于SSA-VMD-SE-KELM结合蒙特卡罗法的风电功率区间预测[J].智慧电力,2022,50(9):59-66. WEI Quan,TANG Zhanjun.Wind power interval prediction based on SSA-VMD-SE-KELM combined with Monte Carlo method[J].Smart Power,2022,50(9):59-66.
    [22] 张永蕊,阎洁,林爱美,等.多点数值天气预报风速和辐照度集中式修正方法研究[J].发电技术,2022,43(2):278-286. ZHANG Yongrui,YAN Jie,LIN Aimei,et al.Integrated correction method of multi-point numerical weather prediction wind speed and irradiance[J].Power Generation Technology,2022,43(2):278-286.
    [23] 吴松梅,蒋建东,燕跃豪,等.基于VMD-PSO-多核极限学习机的短期负荷预测[J].电力系统及其自动化学报,2022,34(5):18-25. WU Songmei,JIANG Jiandong,YAN Yuehao,et al.Short-term load forecasting based on VMD-PSO-MKELM method[J].Proceedings of the CSU-EPSA,2022,34(5):18-25.
    [24] 陈逸枞,张大海,李宇欣,等.基于DWT-MOSMA-SVM的多目标优化短期母线负荷预测[J].电力建设,2023,44(3):49-55. CHEN Yicong,ZHANG Dahai,LI Yuxin,et al.Multi-objective optimization based on DWT-MOSMA-SVM for short-term bus load forecasting[J].Electric Power Construction,2023,44(3):49-55.
    [25] 白丽丽,杨晓娜,张纪英,等.基于改进哈里斯鹰算法的分布式电源优化配置[J].吉林大学学报(信息科学版),2022,40(5):734-743. BAI Lili,YANG Xiaona,ZHANG Jiying,et al.Optimal configuration of distributed power supply based on improved harris eagle algorithm[J].Journal of Jilin University(Information Science Edition),2022,40(5):734-743.
    [26] HEIDARI A A,MIRJALILI S,FARIS H.Harris hawks optimization:Algorithm and applications[J].Future Generation Computer Systems,2019,97:849-872.
    [27] 郭雨鑫,刘升,高文欣,等.精英反向学习与黄金正弦优化的HHO算法[J].计算机工程与应用,2022,58(10):153-161. GUO Yuxin,LIU Sheng,GAO Wenxin,et al.Elite opposition-based learning golden-sine harris hawks optimization[J].Computer Engineering and Application,2022,58(10):153-161.
    [28] 熊玮,徐浩,徐林享,等.计及时间累积效应的RF-APJA-MKRVM输电线路覆冰组合预测模型[J].高电压技术,2022,48(3):948-957. XIONG Wei,XU Hao,XU Linxiang,et al.Combined model of icing prediction of transmission lines based on RF-APJA-MKRVM considering time cumulative effect[J].High Voltage Technology,2022,48(3):948-957.
    [29] 郝艳捧,魏发生,王斌,等.特殊地形下输电线路等值覆冰厚度计算模型有效性分析和改进研究[J].电网技术,2022,46(7):2786-2793. HAO Yanpeng,WEI Fasheng,WANG Bin,et al.Research on Validity analysis and improvement of calculation model of equivalent icing thickness of transmission lines under special terrain[J].Power System Technology,2022,46(7):2786-2793.
    [30] 王小军,高广德,吴田,等.基于PSOEM优化LSSVM的接地网腐蚀预测研究[J].智慧电力,2020,48(11):68-73. WANG Xiaojun,GAO Guangde,WU Tian,et al.Research on corrosion prediction of grounding grid based on PSOEM-optimized LSSVM[J].Smart Power,2020,48(11):68-73.
    [31] 张海林,陈泯融.基于混合策略的改进哈里斯鹰优化算法[J].计算机系统应用,2023,32(1):166-178. ZHANG Hailin,CHEN Minrong.Improved harris hawks optimization algorithm based on hybrid strategy[J].Computer Systems & Applications,2023,32(1):166-178.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

黄 力,宋 爽,刘 闯,等.基于IHHO‑HKELM输电线路覆冰预测模型[J].电力科学与技术学报,2024,39(4):33-41.
HUANG Li, SONG Shuang, LIU Chuang, et al. Icing prediction model of transmission line based on IHHO‑HKELM[J]. Journal of Electric Power Science and Technology,2024,39(4):33-41.

复制
分享
文章指标
  • 点击次数:398
  • 下载次数: 1037
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2024-09-10
文章二维码