基于MTF可视化和改进DenseNet神经网络的电能质量扰动识别算法
作者:
作者单位:

(1.上海电力大学电气工程学院,上海 200090;2.上海电力大学计算机与技术学院,上海 200090;3.上海海洋大学信息学院,上海 201306;4.上海电力大学数理学院,上海 200090;5.上海电力大学经济与管理学院,上海 200090)

作者简介:

通讯作者:

时 帅(1987—),男,博士,讲师,主要从事电力系统运行等研究;E?mail:ssglasgow@163.com

中图分类号:

TM721

基金项目:

国家自然科学基金(61972240)


An identification method based on MTF visualization and improved DenseNet for power quality disturbances
Author:
Affiliation:

((1.College of Electrical Power Engineering,Shanghai University of Electric Power, Shanghai 200090, China;2.College of Computer Science and Technology, Shanghai University of Electric Power,Shanghai 200090, China;3.College of Information Technology,Shanghai Ocean University,Shanghai 201306, China;4.College of Mathematics and Physics,Shanghai University of Electric Power, Shanghai 200090,China;5.College of Economics and Management,Shanghai University of Electric Power, Shanghai 200090, China))

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统电能质量扰动(power quality disturbances, PQDs)分类器人工选取特征过程复杂、精细化程度不足的问题,提出一种基于马尔科夫迁移场(Markov translate filed,MTF)可视化和改进密集卷积网络(dense convolutional networks, DenseNet)的PQDs识别新方法。首先将一维PQD信号经MTF映射为二维图像,接着将图像输入到具有新型通道注意力机制的改进DenseNet中,最后训练网络自行从海量样本中提取特征,实现PQDs信号的正确识别。算例结果表明:在无噪声和信噪比为20、30 dB情况下,所提改进DenseNet能有效克服传统方法中主观性强、抗噪性能差等特征缺点,可以更好地提取复合PQD特征信息,对复合PQD识别率高。

    Abstract:

    Aiming at the problems of complex process and insufficient refinement of artificial feature selection in traditional power quality disturbances (PQDs) classifier, a new PQD recognition method based on Markov transition field visualization and improved DenseNet is proposed. Firstly, the one-dimensional PQD signal is mapped into a two-dimensional image by MTF. Then, the image is input into an improved DenseNet with a new channel attention mechanism. Finally, the network is trained to extract features from a large number of samples by itself, so as to realize the correct recognition of PQD signals. The example results show that: in the case of no noise and signal-to-noise ratio of 20dB and 30dB, the proposed improved DenseNet can effectively overcome the shortcomings of traditional methods, such as strong subjectivity of feature selection and poor anti-noise performance. It can better extract the feature information of complex PQD, and has a high recognition rate for complex PQD.

    参考文献
    相似文献
    引证文献
引用本文

时 帅,陈子文,黄冬梅,等.基于MTF可视化和改进DenseNet神经网络的电能质量扰动识别算法[J].电力科学与技术学报,2024,39(4):102-111.
SHI Shuai, CHEN Ziwen, HUANG Dongmei, et al. An identification method based on MTF visualization and improved DenseNet for power quality disturbances[J]. Journal of Electric Power Science and Technology,2024,39(4):102-111.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-10
  • 出版日期:
文章二维码