基于MTF可视化和改进DenseNet神经网络的电能质量扰动识别算法
CSTR:
作者:
作者单位:

(1.上海电力大学电气工程学院,上海 200090;2.上海电力大学计算机与技术学院,上海 200090;3.上海海洋大学信息学院,上海 201306;4.上海电力大学数理学院,上海 200090;5.上海电力大学经济与管理学院,上海 200090)

通讯作者:

时 帅(1987—),男,博士,讲师,主要从事电力系统运行等研究;E?mail:ssglasgow@163.com

中图分类号:

TM721

基金项目:

国家自然科学基金(61972240)


An identification method based on MTF visualization and improved DenseNet for power quality disturbances
Author:
Affiliation:

((1.College of Electrical Power Engineering,Shanghai University of Electric Power, Shanghai 200090, China;2.College of Computer Science and Technology, Shanghai University of Electric Power,Shanghai 200090, China;3.College of Information Technology,Shanghai Ocean University,Shanghai 201306, China;4.College of Mathematics and Physics,Shanghai University of Electric Power, Shanghai 200090,China;5.College of Economics and Management,Shanghai University of Electric Power, Shanghai 200090, China))

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对传统电能质量扰动(power quality disturbances, PQDs)分类器人工选取特征过程复杂、精细化程度不足的问题,提出一种基于马尔科夫迁移场(Markov translate filed,MTF)可视化和改进密集卷积网络(dense convolutional networks, DenseNet)的PQDs识别新方法。首先将一维PQD信号经MTF映射为二维图像,接着将图像输入到具有新型通道注意力机制的改进DenseNet中,最后训练网络自行从海量样本中提取特征,实现PQDs信号的正确识别。算例结果表明:在无噪声和信噪比为20、30 dB情况下,所提改进DenseNet能有效克服传统方法中主观性强、抗噪性能差等特征缺点,可以更好地提取复合PQD特征信息,对复合PQD识别率高。

    Abstract:

    Aiming at the problems of complex process and insufficient refinement of artificial feature selection in traditional power quality disturbances (PQDs) classifier, a new PQD recognition method based on Markov transition field visualization and improved DenseNet is proposed. Firstly, the one-dimensional PQD signal is mapped into a two-dimensional image by MTF. Then, the image is input into an improved DenseNet with a new channel attention mechanism. Finally, the network is trained to extract features from a large number of samples by itself, so as to realize the correct recognition of PQD signals. The example results show that: in the case of no noise and signal-to-noise ratio of 20dB and 30dB, the proposed improved DenseNet can effectively overcome the shortcomings of traditional methods, such as strong subjectivity of feature selection and poor anti-noise performance. It can better extract the feature information of complex PQD, and has a high recognition rate for complex PQD.

    参考文献
    [1] PRAISELIN W J,EDWARD J B.A review on impacts of power quality,control and optimization strategies of integration of renewable energy based microgrid operation[J].International Journal of Intelligent Systems and Applications,2018,10(3):67-81.
    [2] 郑玉平,吕鹏飞,李斌,等.新型电力系统继电保护面临的问题与解决思路[J].电力系统自动化,2023,47(22):3-15. ZHENG Yuping,Lü Pengfei,LI Bin,et al.Problems faced by relay protection in new power system and their solution ideas[J].Automation of Electric Power Systems,2023,47(22):3-15.
    [3] 汪飞,全晓庆,任林涛.电能质量扰动检测与识别方法研究综述[J].中国电机工程学报,2021,41(12):4104-4121. WANG Fei,QUAN Xiaoqing,REN Lintao.Review of power quality disturbance detection and identification methods[J].Proceedings of the CSEE,2021,41(12):4104-4121.
    [4] 罗伟明,吴杰康,方梓康,等.基于WT和LDC综合算法的电能质量扰动源辨识方法[J].供用电,2022,39(10):58-65+83. LUO Weiming,WU Jiekang,FANG Zikang,et al.An identification method for disturbance source of power quality based on WT and LDC synthesis algorithm[J].Distribution & Utilization,2022,39(10):58-65+83.
    [5] SAHU G,DASH S,BISWAL B.Time‐frequency analysis of power quality disturbances using synchro extracting transform[J].International Transactions on Electrical Energy Systems,2020,30(4):e12278.
    [6] 黄建明,瞿合祚,李晓明.基于短时傅里叶变换及其谱峭度的电能质量混合扰动分类[J].电网技术,2016,40(10):3184-3191. HUANG Jianming,QU Hezuo,LI Xiaoming.Classification for hybrid power quality disturbance based on STFT and its spectral kurtosis[J].Power System Technology,2016,40(10):3184-3191.
    [7] KUMAR V,GAWRE S K,KUMAR T.Power quality analysis using wavelet transform:a review[J].International Journal of Innovative Research in Science,Engineering and Technology,2014,3(S3):130-136.
    [8] 李琦,许素安,施阁,等.基于S变换和IWOA-SVM的复合电能质量扰动识别[J].智慧电力,2023,51(5):30-35+50. LI Qi,XU Su'an,SHI Ge,et al.Identification of composite power quality disturbance based on S-transform and IWOA-SVM[J].Smart Power,2023,51(5):30-35+50.
    [9] ENSHAEE A,ENSHAEE P.A new S-transform-based method for identification of power quality disturbances[J].Arabian Journal for Science and Engineering,2018,43(6):2817-2832.
    [10] 陈向群,杨茂涛,刘谋海,等.基于模糊聚类分析的电能质量扰动模式识别方法[J].电力科学与技术学报,2022,37(2):79-85. CHEN Xiangqun,YANG Maotao,LIU Mouhai,et al.Disturbance pattern recognition method of power quality based on fuzzy clustering analysis[J].Journal of Electrical Power Science and Technology,2022,37(2):79-85.
    [11] LIU Z,CUI Y,LI W.A classification method for complex power quality disturbances using EEMD and rank wavelet SVM[J].IEEE Transactions on Smart Grid,2015,6(4):1678-1685.
    [12] 陈坚,刘思议,金涛.基于SURE小波阈值消噪和MCEEMD-HHT的低频振荡分析[J].高电压技术,2020,46(1):151-160. CHEN Jian,LIU Siyi,JIN Tao.Analysis of low-frequency oscillation based on SURE wavelet threshold de-noising and MCEEMD-HHT method[J].High Voltage Engineering,2020,46(1):151-160.
    [13] 杨晓梅,罗月婉,肖先勇,等.基于自适应阈值和奇异值分解的电能质量扰动检测新方法[J].电网技术,2018,42(7):2286-2294. YANG Xiaomei,LUO Yuewan,XIAO Xianyong,et al.A new detection approach of power quality disturbances based on adaptive threshold and singular value decomposition[J].Power System Technology,2018,42(7):2286-2294.
    [14] BAGHERI A,MARDANEH M,RAJAEI A,et al.Detection of grid voltage fundamental and harmonic components using Kalman filter and generalized averaging method[J].IEEE Transactions on Power Electronics,2016,31(2):1064-1073.
    [15] 陈子璇,席燕辉,沈银.基于卡尔曼滤波和深度置信网络的复合电能质量扰动分类[J].电力系统保护与控制,2022,50(7):81-90. CHEN Zixuan,XI Yanhui,SHEN Yin.Recognition of multiple power quality disturbances based on a Kalman filter and deep belief network[J].Power System Protection and Control,2022,50(7):81-90.
    [16] MAHELA O P,SHAIK A G.Recognition of power quality disturbances using S-transform based ruled decision tree and fuzzy C-means clustering classifiers[J].Applied Soft Computing,2017,59:243-257.
    [17] 刘文浩,吴毅江,李文泽,等.基于随机决策森林的高压电缆局部放电模式识别[J].高压电器,2022,58(6):165-170. LIU Wenhao,WU Yijiang,LI Wenze,et al.Partial discharge pattern recognition of high-voltage cables based on random forest method[J].High Voltage Apparatus,2022,58(6):165-170.
    [18] 任子晖,王琦.基于优化DDAGSVM多类分类策略的电能质量扰动识别[J].电力系统保护与控制,2018,46(5):82-88. REN Zihui,WANG Qi.Power quality disturbance recognition based on improved DDAGSVM multi-class classification strategy[J].Power System Protection and Control,2018,46(5):82-88.
    [19] KAPOOR R,KUMAR R,TRIPATHI M M.Volterra bound interval type-2 fuzzy logic-based approach for multiple power quality events analysis[J].IET Electrical Systems in Transportation,2018,8(3):188-196.
    [20] 郭庆来,兰健,周艳真,等.基于混合智能的新型电力系统运行方式分析决策架构及其关键技术[J].中国电力,2023,56(9):1-13. GUO Qinglai,LAN Jian,ZHOU Yanzhen,et al.Architecture and key technologies of hybrid-intelligence-based decision-making of operation modes for new type power systems[J].Electric Power,2023,56(9):1-13.
    [21] 徐敬伟,程杉,严潇,等.基于WMM与HATF的含噪暂态电能质量扰动检测方法[J].电力科学与技术学报,2021,36(4):3-11. XU Jingwei,CHEN Shan,YAN Xiao,et al.Noisy transient power quality disturbance detection method based on WMM and HATF[J].Journal of Electrical Power Science and Technology,2021,36(4):3-11.
    [22] 谢小英,牛益国,于惠慧,等.基于相空间重构与原子分解的复杂电压暂降特征参数辨识[J].电力科学与技术学报,2020,35(5):103-10. XIE Xiaoying,NIU Yiguo,YU Huihui,et al.Voltage sag characteristic parameter identification method based on phase space reconstruction and atomic decomposition[J].Journal of Electrical Power Science and Technology,2020,35(5):103-10.
    [23] 兰名扬,刘宇龙,金涛,等.基于可视化轨迹圆和ResNet18的复合电能质量扰动类型识别[J].中国电机工程学报,2022,42(17):6274-6285. LAN Mingyang,LIU Yulong,JIN Tao,et al.An improved recognition method based on visual trajectory circle and ResNet18 for complex power quality disturbances[J].Proceedings of the CSEE,2022,42(17):6274-6285.
    [24] 武昭旭,杨岸,祝龙记.基于循环神经网络的电能质量扰动识别[J].电力系统保护与控制,2020,48(18):88-94. WU Zhaoxu,YANG An,ZHU Longji.Power quality disturbance recognition based on a recurrent neural network[J].Power System Protection and Control,2020,48(18):88-94.
    [25] 董光德,李道明,陈咏涛,等.基于粒子群优化与卷积神经网络的电能质量扰动分类方法[J].发电技术,2023,44(1):136-142. DONG Guangde,LI Daoming,CHEN Yongtao,et al.Power quality disturbance classification method based on particle swarm optimization and convolutional neural network[J].Power Generation Technology,2023,44(1):136-142.
    [26] 郑炜,林瑞全,王俊,等.基于GAF与卷积神经网络的电能质量扰动分类[J].电力系统保护与控制,2021,49(11):97-104. ZHENG Wei,LIN Ruiquan,WANG Jun,et al.Power quality disturbance classification based on GAF and a convolutional neural network[J].Power System Protection and Control,2021,49(11):97-104.
    [27] WANG Q,WU B,ZHU P,et al.ECA-Net:efficient channel attention for deep convolutional neural networks[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),Virtual,Online,United States,2020.
    [28] 陈子文.论文附录[EB/OL].https://pan.baidu.com/s/1je9tTpCvbwWeT1jl9vEiVg(提取码:vb2q),2023-03-06. CHEN Ziwen.Appendix to the paper[EB/OL].https://pan.baidu.com/s/1je9tTpCvbwWeT1jl9vEiVg(extraction code: vb2q),2023-03-06.
    [29] ZHAO X,SUN H,LIN B,et al.Markov transition fields and deep learning-based event-classification and vibration-frequency measurement for φ-OTDR[J].IEEE Sensors Journal,2022,22(4):3348-3357.
    [30] HUANG G,LIU Z,VAN DER MAATEN,L,et al.Densely connected convolutional networks[C]//30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR),Honolulu,HI,United States,2017.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

时 帅,陈子文,黄冬梅,等.基于MTF可视化和改进DenseNet神经网络的电能质量扰动识别算法[J].电力科学与技术学报,2024,39(4):102-111.
SHI Shuai, CHEN Ziwen, HUANG Dongmei, et al. An identification method based on MTF visualization and improved DenseNet for power quality disturbances[J]. Journal of Electric Power Science and Technology,2024,39(4):102-111.

复制
分享
文章指标
  • 点击次数:156
  • 下载次数: 1036
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2024-09-10
文章二维码