(1.上海电力大学电气工程学院,上海 200090;2.上海电力大学计算机与技术学院,上海 200090;3.上海海洋大学信息学院,上海 201306;4.上海电力大学数理学院,上海 200090;5.上海电力大学经济与管理学院,上海 200090)
时 帅(1987—),男,博士,讲师,主要从事电力系统运行等研究;E?mail:ssglasgow@163.com
TM721
国家自然科学基金(61972240)
((1.College of Electrical Power Engineering,Shanghai University of Electric Power, Shanghai 200090, China;2.College of Computer Science and Technology, Shanghai University of Electric Power,Shanghai 200090, China;3.College of Information Technology,Shanghai Ocean University,Shanghai 201306, China;4.College of Mathematics and Physics,Shanghai University of Electric Power, Shanghai 200090,China;5.College of Economics and Management,Shanghai University of Electric Power, Shanghai 200090, China))
时 帅,陈子文,黄冬梅,等.基于MTF可视化和改进DenseNet神经网络的电能质量扰动识别算法[J].电力科学与技术学报,2024,39(4):102-111.
SHI Shuai, CHEN Ziwen, HUANG Dongmei, et al. An identification method based on MTF visualization and improved DenseNet for power quality disturbances[J]. Journal of Electric Power Science and Technology,2024,39(4):102-111.