考虑用户决策不确定性的电动汽车充电站用户参与度优化方法
CSTR:
作者:
作者单位:

(1.广东顺德电力设计院有限公司,广东 佛山 528399;2.华南理工大学电力学院,广东 广州 510641)

通讯作者:

隋坤明(2001—),男,硕士研究生,主要从事电力市场需求响应、电动汽车以及主动配电网的优化控制研究;E?mail: 1132160291@qq.com

中图分类号:

TM863

基金项目:

国家自然科学基金(52077083);广东省自然科学基金(2021A1515012073);顺德电力设计院重点科技项目(GS20220108)


Optimization of user participation in electric vehicle charging stations considering uncertainty of user decision
Author:
Affiliation:

(1.Guangdong Shunde Electric Power Design Institute Co., Ltd., Foshan 528399, China; 2.School of Electric Power Engineering,South China University of Technology, Guangzhou 510641, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    在电动汽车充电站参与需求响应的背景下,用户参与度对充电站经济效益有着巨大影响。基于前景理论该文提出充电站用户参与度优化方法,通过改变充电站电价的组成及形式,实现充电站用户参与度及经济效益提高的目标。首先,针对充电站价格对电动汽车用户的影响,建立用户价格影响模型,得到用户数量初步变化率;然后,使用前景理论价值函数量化用户面对不同电价时的决策不确定性,并计及充电站距离的影响,对用户初步变化率进行修正,得到用户最终变化数量;最后,根据上述模型并基于充电站典型负荷数据,以充电站需求响应时段最大负荷为约束,采用非支配排序遗传算法?II(non?dominated sorting genetic algorithm?II,NSGA?II),以充电站日收益最大和用户参与度最大为目标进行多目标优化,确定充电站电价的组成及形式,进一步确定最优用户参与度和充电站收益。仿真结果可以验证所提方法的有效性。

    Abstract:

    In the context of demand response at electric vehicle charging stations, user participation has a significant impact on the economic benefits of charging stations. Based on prospect theory, an optimization method for user participation at charging stations is proposed, aiming to improve user participation and economic benefits by altering the composition and format of electricity prices at charging stations. Initially, a user price impact model is established to analyze the influence of charging station prices on electric vehicle users, yielding preliminary user quantity change rates. Subsequently, the value function in prospect theory is used to quantify the decision uncertainty of users when faced with different electricity prices, and adjustments are made to the preliminary user change rates, considering the impact of charging station distance, to obtain the final user quantity changes. Finally, based on the aforementioned models and typical load data from charging stations, with the maximum load during demand response periods as a constraint, the non-dominated sorting genetic algorithm-II (NSGA-II) optimization algorithm is employed to conduct a multi-objective optimization aiming to maximize daily revenue and user participation at the charging station. This determines the composition and format of electricity prices at the charging station, further identifying the optimal user participation and charging station revenue. Simulation results verify the effectiveness of the proposed method.

    参考文献
    [1] 人民网.2022年我国充电桩数量同比增长近100%[EB/OL].http://finance.people.com.cn/n1/2023/0215/c1004-32624156.html,2023-02-15. People.cn.Nearly 100% year-on-year growth in the number of charging piles in China by 2022[EB/OL].http://finance.people.com.cn/n1/2023/0215/c1004-32624156.html,2023-02-15.
    [2] 广东省能源局.广东省发展改革委关于广东省十三届人大五次会议第1025号代表建议答复的函[EB/OL]. http://drc.gd.gov.cn/rdjybl/content/post_3949061.html,2022-06-13. Energy Bureau of Guangdong Province.Guangdong Provincial Development and Reform Commission on the fifth session of thethirteenth session of the Guangdong Provincial People's Congress No. 1025 letter of response to the proposal of the representatives[EB/OL].http://drc.gd.gov.cn/rdjybl/content/post_3949061.html,2022-06-13.
    [3] 徐筝,孙宏斌,郭庆来.综合需求响应研究综述及展望[J].中国电机工程学报,2018,38(24):7194-7205+7446. XU Zheng,SUN Hongbin,GUO Qinglai.Review and prospect of integrated demand response[J].Proceedings of CSEE,2018,38(24):7194-7205+7446.
    [4] 姚一鸣,赵溶生,李春燕,等.面向电力系统灵活性的电动汽车控制策略[J].电工技术学报,2022,37(11):2813-2824. YAO Yiming,ZHAO Rongsheng,LI Chunyan,et al.Control strategy of electric vehicles oriented to power system flexibility[J].Transactions of China Electrotechnical Society,2022,37(11):2813-2824.
    [5] 广东省发展和改革委员会.关于我省新能源汽车用电价格有关问题的通知[EB/OL].http://drc.gd.gov.cn/ywtz/content/post_833857.html,2018-07-02. Guangdong Provincial Development and Reform Commission.Notice on issues related to the price of electricity for new energyvehicles in the Guangdong Province[EB/OL].http://drc.gd.gov.cn/ywtz/content/post_833857.html,2018-07-02.
    [6] 韩妍,丁惜瀛,程锟,等.考虑用户参与度的电动汽车集群优化调度策略[J].控制与信息技术,2021(6):51-56. HAN Yan,DING Xiying,CHEN Kun,et al.A cluster-based optimal scheduling strategy for electric vehicles considering user participation[J].Control and Information Technology,2021(6):51-56.
    [7] 张良,孙成龙,蔡国伟,等.基于PSO算法的电动汽车有序充放电两阶段优化策略[J].中国电机工程学报,2022,42(5):1837-1852. ZHANG Liang,SUN Chenglong,CAI Guowei,et al. Two-stage optimization strategy for coordinated charging and discharging of EVs based on PSO algorithm[J].Proceedings of the CSEE,2022,42(5):1837-1852.
    [8] 朱超婷,杨玲君,崔一铂,等.考虑需求响应用户参与度的主动配电网优化调度[J].电测与仪表,2023,60(4):99-105+154. ZHU Chaoting,YANG Lingjun,CUI Yibo,et al.Optimal scheduling of active distribution network considering user participation in demand response[J].Electrical Measurement & Instrumentation,2023,60(4):99-105+154.
    [9] 林卉,周一辰,李永刚,等.基于电动汽车两阶段充电站分配的聚合商定价方法[J].电力系统保护与控制,2023,51(21):44-56. LIN Hui,ZHOU Yichen,LI Yonggang,et al.Aggregator pricing methodology based on two-stage charging station allocation for electric vehicles[J].Power System Protection and Control,2023,51(21):44-56.
    [10] 沈鑫,严松,李妍.考虑交通流量的电动汽车充电站优化规划方法[J].智慧电力,2023,51(7):74-79. SHEN Xin,YAN Song,LI Yan.Optimal planning method of electric vehicle charging station considering traffic flow[J].Smart Power,2023,51(7):74-79.
    [11] 范晋衡,刘琦颖,曲大鹏,等.考虑EV用户响应特性的激励型DR的削峰效果和各方需求分析[J].电力科学与技术学报,2022,37(6):138-149. FAN Jinheng,LIU Qiying,QU Dapeng,et al.Analysis on peak shaving effect and needs of all parties based on incentive demandresponse considering response characteristics of EV users[J].Journal of Electric Power Science and Technolog,2022,37(6):138-149.
    [12] 肖丽,谢尧平,胡华锋,等.基于V2G的电动汽车充放电双层优化调度策略[J].高压电器,2022,58(5):164-171. XIAO Li,XIE Yaoping,HU Huafeng,et al.Two?level optimization scheduling strategy for EV's charging and discharging based on V2G[J].High Voltage Apparatus,2022,58(5):164-171.
    [13] 冯雨龙.聚合商模式下考虑用户参与度的分布式储能优化配置研究[D].南京:南京师范大学,2021. FENG Yulong.Research on optimal allocation of distributed energy storage considering user participation in aggregator model[D].Nanjing:Nanjing Normal University,2021.
    [14] 吴佳龙,蔡晔,唐夏菲,等.基于Isard法的充电站服务范围划分与实时定价策略[J].电力建设,2023,44(10):72-83. WU Jialong,CAI Ye,TANG Xiafei,et al.Isard method based charging station service range division and real-time pricing strategy[J].Electric Power Construction,2023,44(10):72-83.
    [15] 周凌锋,王杰.考虑用户响应程度的电动汽车分时电价策略[J].电测与仪表,2018,55(22):67-72. ZHOU Lingfeng,WANG Jie.Time-of-use pricing strategy for electric vehicles considering demand response degree of users[J].Electrical Measurement & Instrumentation,2018,55(22):67-72.
    [16] 王呈轩,樊艳芳,李弘昌,等.直流微网供电的电动汽车无线充电站控制策略[J].电网与清洁能源,2022,38(10):126-134. WANG Chengxuan,FAN Yanfang,LI Hongchang,et al.Research on the control strategy of electric vehicle wireless charging station powered by DC microgrid[J].Power System and Clean Energy,2022,38(10):126-134.
    [17] 郑若楠,李志浩,唐雅洁,等.考虑居民用户参与度不确定性的激励型需求响应模型与评估[J].电力系统自动化,2022,46(8):154-162. ZHENG Ruonan,LI Zhihao,TANG Yajie,et al.Incentive demand response model and evaluation considering uncertainty of residential customer participation degree[J].Automation of Electric Power Systems,2022,46(8):154-162.
    [18] 罗建竹,苏春.基于用户行为和分时电价的充电定价策略优化[J].东南大学学报(自然科学版),2021,51(6):1109-1116. LUO Jianzhu,SU Chun.Optimization of charging pricing strategy based on user behavior and time-of-use tariffs[J].Journal of Southeast University(Natural Science Edition),2021,51(6):1109-1116.
    [19] BAO Y,CHANG F,SHI J,et al.An approach for pricing of charging service fees in an electric vehicle public charging station based on prospect theory[J].Energies,2022,15(14):5308.
    [20] 张育颖,谢品杰.基于NSGA-II算法的互补能源接入方案优化配置[J].电力科学与技术学报,2021,36(5):153-160. ZHANG Yuying,XIE Pinjie.Research on multi-energy supplement system optimization method based on NSGA-II[J].Journal of Electric Power Science and Technolog,2021,36(5):153-160.
    [21] GAO K,YANG Y,QU X.Diverging effects of subjective prospect values of uncertain time and money[J].Communications in Transportation Research,2021,1:100007.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈腾生,杨汝泉,隋坤明,等.考虑用户决策不确定性的电动汽车充电站用户参与度优化方法[J].电力科学与技术学报,2024,39(4):128-137.
CHEN Tengsheng, YANG Ruquan, SUI Kunming, et al. Optimization of user participation in electric vehicle charging stations considering uncertainty of user decision[J]. Journal of Electric Power Science and Technology,2024,39(4):128-137.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2024-09-10
文章二维码