考虑用户决策不确定性的电动汽车充电站用户参与度优化方法
作者:
作者单位:

(1.广东顺德电力设计院有限公司,广东 佛山 528399;2.华南理工大学电力学院,广东 广州 510641)

作者简介:

通讯作者:

隋坤明(2001—),男,硕士研究生,主要从事电力市场需求响应、电动汽车以及主动配电网的优化控制研究;E?mail: 1132160291@qq.com

中图分类号:

TM863

基金项目:

国家自然科学基金(52077083);广东省自然科学基金(2021A1515012073);顺德电力设计院重点科技项目(GS20220108)


Optimization of user participation in electric vehicle charging stations considering uncertainty of user decision
Author:
Affiliation:

(1.Guangdong Shunde Electric Power Design Institute Co., Ltd., Foshan 528399, China; 2.School of Electric Power Engineering,South China University of Technology, Guangzhou 510641, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在电动汽车充电站参与需求响应的背景下,用户参与度对充电站经济效益有着巨大影响。基于前景理论该文提出充电站用户参与度优化方法,通过改变充电站电价的组成及形式,实现充电站用户参与度及经济效益提高的目标。首先,针对充电站价格对电动汽车用户的影响,建立用户价格影响模型,得到用户数量初步变化率;然后,使用前景理论价值函数量化用户面对不同电价时的决策不确定性,并计及充电站距离的影响,对用户初步变化率进行修正,得到用户最终变化数量;最后,根据上述模型并基于充电站典型负荷数据,以充电站需求响应时段最大负荷为约束,采用非支配排序遗传算法?II(non?dominated sorting genetic algorithm?II,NSGA?II),以充电站日收益最大和用户参与度最大为目标进行多目标优化,确定充电站电价的组成及形式,进一步确定最优用户参与度和充电站收益。仿真结果可以验证所提方法的有效性。

    Abstract:

    In the context of demand response at electric vehicle charging stations, user participation has a significant impact on the economic benefits of charging stations. Based on prospect theory, an optimization method for user participation at charging stations is proposed, aiming to improve user participation and economic benefits by altering the composition and format of electricity prices at charging stations. Initially, a user price impact model is established to analyze the influence of charging station prices on electric vehicle users, yielding preliminary user quantity change rates. Subsequently, the value function in prospect theory is used to quantify the decision uncertainty of users when faced with different electricity prices, and adjustments are made to the preliminary user change rates, considering the impact of charging station distance, to obtain the final user quantity changes. Finally, based on the aforementioned models and typical load data from charging stations, with the maximum load during demand response periods as a constraint, the non-dominated sorting genetic algorithm-II (NSGA-II) optimization algorithm is employed to conduct a multi-objective optimization aiming to maximize daily revenue and user participation at the charging station. This determines the composition and format of electricity prices at the charging station, further identifying the optimal user participation and charging station revenue. Simulation results verify the effectiveness of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

陈腾生,杨汝泉,隋坤明,等.考虑用户决策不确定性的电动汽车充电站用户参与度优化方法[J].电力科学与技术学报,2024,39(4):128-137.
CHEN Tengsheng, YANG Ruquan, SUI Kunming, et al. Optimization of user participation in electric vehicle charging stations considering uncertainty of user decision[J]. Journal of Electric Power Science and Technology,2024,39(4):128-137.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-10
  • 出版日期:
文章二维码