基于ARIMA‑LSTM‑RBF组合模型的风机出力短期预测
CSTR:
作者:
作者单位:

(1.广东电网有限责任公司电力调度控制中心,广东 广州 510062;2.南方电网电力科技股份有限公司,广东 广州 510180)

作者简介:

通讯作者:

郑文杰(1981—),男,博士,高级工程师,主要从事电力市场与新型电力系统研究;E?mail:zhengwenjie@csg.cn

中图分类号:

TM863

基金项目:

中国南方电网有限责任公司科技项目(036000KK52210054,GDKJXM20210063)


Short‑term output prediction of wind turbine based on ARIMA‑LSTM‑RBF combined model
Author:
Affiliation:

(1.Power Dispatching and Control Center,Guangdong Power Grid Co.,Ltd.,Guangzhou 510062,China;2.China Southern Power Grid Technology Co.,Ltd.,Guangzhou 510180,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为响应中国“双碳”目标,以风电为代表的新能源在电网出力中的比重不断提升,有效的风机出力预测对于提前制定电网的调度与发电计划尤为重要。由于风电数据具有不规则性强、季节性强等特点。为此,针对单模型预测方法无法解决风电间歇性的同时保证预测精度的问题,提出一种利用差分自回归移动平均(autoregressive integrated moving average, ARIMA)时间序列、长短期记忆(long short?term memory, LSTM)网络和径向基函数(radial basis function, RBF)神经网络建立组合模型对某地区风机出力进行短期预测。首先,进行数据预处理及序列平稳性分析与处理,得到平稳性序列并通过ARIMA预测,其次,将不满足残差白噪声分析判定的不规则数据通过LSTM预测;然后,使用RBF神经网络学习和模拟得出预测值以提升精度;最后,基于某风电接入系统数据进行仿真。通过与其他单一模型预测方法对比,结果表明:所提出的组合模型预测方法能够对季节性强和不规则性强的风电数据进行预测并且有更好的预测精度,为相应设备的运行与调度提供参考,提升供电可靠性。

    Abstract:

    In response to China's "dual carbon" goals, the proportion of new energy sources, represented by wind power, in the power output for power grids continues to increase. Effective wind turbine output prediction is particularly important for formulating grid scheduling and power generation plans ahead of time. Due to the strong irregularity and seasonality of wind power data, a single model prediction method cannot solve the problem of wind power intermittency while ensuring prediction accuracy. To address this, a combined model using the autoregressive integrated moving average (ARIMA) time series, long- and short-term memory (LSTM) network, and radial basis function (RBF) neural network is proposed for short-term prediction of wind turbine output in a certain region. First, data preprocessing and sequence stationarity analysis are performed to obtain a stationary sequence and predict it through ARIMA. Secondly, irregular data that do not meet the criteria of residual white noise analysis are predicted through LSTM. Then, the RBF neural network is used to learn and simulate the predicted values to improve accuracy. Finally, simulations are conducted based on data from a wind power station. Compared with other single model prediction methods, the results show that the proposed combined model prediction method can predict wind power data with strong seasonality and irregularity and has better prediction accuracy, providing a reference for the operation and scheduling of corresponding equipment and enhancing power supply reliability.

    参考文献
    相似文献
    引证文献
引用本文

郑文杰,谭慧娟,赵瑞锋,等.基于ARIMA‑LSTM‑RBF组合模型的风机出力短期预测[J].电力科学与技术学报,2024,39(4):153-159,186.
ZHENG Wenjie, TAN Huijuan, ZHAO Ruifeng, et al. Short‑term output prediction of wind turbine based on ARIMA‑LSTM‑RBF combined model[J]. Journal of Electric Power Science and Technology,2024,39(4):153-159,186.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-10
  • 出版日期:
文章二维码