基于ARIMA‑LSTM‑RBF组合模型的风机出力短期预测
CSTR:
作者:
作者单位:

(1.广东电网有限责任公司电力调度控制中心,广东 广州 510062;2.南方电网电力科技股份有限公司,广东 广州 510180)

通讯作者:

郑文杰(1981—),男,博士,高级工程师,主要从事电力市场与新型电力系统研究;E?mail:zhengwenjie@csg.cn

中图分类号:

TM863

基金项目:

中国南方电网有限责任公司科技项目(036000KK52210054,GDKJXM20210063)


Short‑term output prediction of wind turbine based on ARIMA‑LSTM‑RBF combined model
Author:
Affiliation:

(1.Power Dispatching and Control Center,Guangdong Power Grid Co.,Ltd.,Guangzhou 510062,China;2.China Southern Power Grid Technology Co.,Ltd.,Guangzhou 510180,China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为响应中国“双碳”目标,以风电为代表的新能源在电网出力中的比重不断提升,有效的风机出力预测对于提前制定电网的调度与发电计划尤为重要。由于风电数据具有不规则性强、季节性强等特点。为此,针对单模型预测方法无法解决风电间歇性的同时保证预测精度的问题,提出一种利用差分自回归移动平均(autoregressive integrated moving average, ARIMA)时间序列、长短期记忆(long short?term memory, LSTM)网络和径向基函数(radial basis function, RBF)神经网络建立组合模型对某地区风机出力进行短期预测。首先,进行数据预处理及序列平稳性分析与处理,得到平稳性序列并通过ARIMA预测,其次,将不满足残差白噪声分析判定的不规则数据通过LSTM预测;然后,使用RBF神经网络学习和模拟得出预测值以提升精度;最后,基于某风电接入系统数据进行仿真。通过与其他单一模型预测方法对比,结果表明:所提出的组合模型预测方法能够对季节性强和不规则性强的风电数据进行预测并且有更好的预测精度,为相应设备的运行与调度提供参考,提升供电可靠性。

    Abstract:

    In response to China's "dual carbon" goals, the proportion of new energy sources, represented by wind power, in the power output for power grids continues to increase. Effective wind turbine output prediction is particularly important for formulating grid scheduling and power generation plans ahead of time. Due to the strong irregularity and seasonality of wind power data, a single model prediction method cannot solve the problem of wind power intermittency while ensuring prediction accuracy. To address this, a combined model using the autoregressive integrated moving average (ARIMA) time series, long- and short-term memory (LSTM) network, and radial basis function (RBF) neural network is proposed for short-term prediction of wind turbine output in a certain region. First, data preprocessing and sequence stationarity analysis are performed to obtain a stationary sequence and predict it through ARIMA. Secondly, irregular data that do not meet the criteria of residual white noise analysis are predicted through LSTM. Then, the RBF neural network is used to learn and simulate the predicted values to improve accuracy. Finally, simulations are conducted based on data from a wind power station. Compared with other single model prediction methods, the results show that the proposed combined model prediction method can predict wind power data with strong seasonality and irregularity and has better prediction accuracy, providing a reference for the operation and scheduling of corresponding equipment and enhancing power supply reliability.

    参考文献
    [1] 温锦斌,王昕,李立学,等.基于频域分解的短期风电负荷预测[J].电工技术学报,2013,28(5):66-72. WEN Jinbin,WANG Xin,LI Lixue,et al.Short-term wind power load forecasting based on frequency domain decomposition[J].Transactions of China Electrotechnical Society,2013,28(5):66-72.
    [2] 张海亮,王艺博,蔡国伟,等.面向风电消纳与电熔镁高载能负荷调控的源荷协调优化策略[J].电工技术学报,2022,37(17):4401-4410. ZHANG Hailiang,WANG Yibo,CAI Guowei,et al.Source-load coordination optimization strategy for wind power accommodation and high energy load regulation of electric fused magnesium[J].Transactions of China Electrotechnical Society,2022,37(17):4401-4410.
    [3] 靳春旭,董福贵.长期风电负荷预测方法比较[J].广东电力,2018,31(9):70-76. JIN Chunxu,DONG Fugui.Comparison of prediction methods for long-term wind power load[J].Guangdong Electric Power,2018,31(9):70-76.
    [4] 陈宋宋,王阳,周颖,等. 基于客户用电数据的多时空维度负荷预测综述[J]. 电网与清洁能源,2023,39(12):28-40. CHEN Songsong,WANG Yang,ZHOU Ying,et al. A review of multi-time-space load forecasting based on customer electricity consumption data[J].Power System and Clean Energy,2023,39(12):28-40.
    [5] 王强钢,郭莹霏,莫复雪,等.计及变压器短期急救负载的城市高压配电网负荷优化分配[J].电力系统自动化,2023,47(19):106-115. WANG Qianggang, GUO Yingfei, MO Fuxue, et al. Optimal load distribution of urban high voltage distribution network considering short-term emergency load of transformer[J].Automation of Electric Power Systems, 2023,47(19) :106-115.
    [6] 刘业峰,王婷.基于GRA-LSSVM密度法的配电网空间负荷预测方法研究[J].计算机测量与控制,2018,26(11):256-260. LIU Yefeng,WANG Ting.Research on spatial load forecasting of distribution network based on GRA-LSSVM density method[J].Computer Measurement & Control,2018,26(11):256-260.
    [7] 马庆法,吕晓禄,胡云,等.风电出力的波动特性及预测方法研究[J].山东电力技术,2016,43(9):15-19+23. MA Qingfa,Lü Xiaolu,HU Yun,et al.Fluctuation characteristics and the prediction method of wind power[J].Shandong Electric Power,2016,43(9):15-19+23.
    [8] 崔恺,许宜菲,李雪松,等.基于广义回归神经网络的风电机组性能预测模型及状态预警[J].科学技术与工程,2020,20(32):13220-13228. CUI Kai,XU Yifei,LU Xuesong,et al,Wind turbine performance prediction model and early warning of abnormal condition based on GRNN[J].Science Technology and Engineering,2020,20(32):13220-13228.
    [9] 李盘荣,华伟东.基于QPSO-RBFNN和模糊理论的电力系统短期负荷预测方法[J].电力科学与技术学报,2008,23(1):60-65. LI Panrong,HUA Weidong.Short-term load forecast with QPSO-RBFNN and fuzzy logic for power systems[J].Journal of Electric Power Science and Technology,2008,23(1):60-65.
    [10] 任建吉,位慧慧,邹卓霖,等.基于CNN-BiLSTM-Attention的超短期电力负荷预测[J].电力系统保护与控制,2022,50(8):108-116. REN Jianji,WEI Huihui,ZOU Zhuolin,et al.Ultra-short-term power load forecasting based on CNN-BiLSTM-Attention[J].Power System Protection and Control,2022,50(8):108-116.
    [11] TORRES J F,MARTíNEZ-áLVAREZ F,TRONCOSO A.A deep LSTM network for the Spanish electricity consumption forecasting[J].Neural Computing & Applications,2022,34(13):10533-10545.
    [12] KO M,LEE K,KIM J,et al.Deep concatenated residual network with bidirectional LSTM for one-hour-ahead wind power forecasting[J].IEEE Transactions on Sustainable Energy,2021,12(2):1321-1335.
    [13] 魏林涵,郝正航,郭家鹏,等.基于TCA-CNN-LSTM 的短期负荷预测研究[J].电测与仪表,2023,60(8):73-80. WEI Linhan,HAO Zhenghang,GUO Jiapeng,et al.Research on short-term load forecasting based on TCA-CNN- LSTM[J].Electrical Measurement & Instrumentation,2023,60(8):73-80.
    [14] 程津,黎燕,夏向阳,等.基于双组合预测的经济—电力负荷预测模型[J].电力科学与技术学报,2018,33(3):18-22. CHENG Jin,LI Yan,XIA Xiangyang,et al.Economic-electricity conduction prediction model based on dual combination prediction[J].Journal of Electric Power Science and Technology,2018,33(3):18-22.
    [15] LUO S,RAO Y,CHEN J,et al.Short-term load forecasting model of distribution transformer based on CNN and LSTM[C]//IEEE International Conference on High Voltage Engineering and Application(ICHVE),Beijing,China,2020.
    [16] CHEN L,YU H,TONG L,et al.Research on load forecasting method of distribution transformer based on deep learning[C]//7th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2020 6th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom),New York,NY,USA,2020.
    [17] 荀超,陈伯建,吴翔宇,等.基于改进K-means算法的电力短期负荷预测方法研究[J].电力科学与技术学报,2022,37(1):90-95. XUN Cho,CHEN Bojian,WU Xiangyu,et al.Research on short-term power load forecasting method based on improved K-means algorithm[J].Journal of Electric Power Science and Technology,2022,37(1):90-95.
    [18] 李春生,陈光辉.基于最大信息压缩指标与层次分析法的电力负荷组合预测模型[J].电力科学与技术学报,2008,23(1):56-59. LI Chunsheng,CHEN Guanghu.Combination model for power system load forecast based on maximal information compress index and analytic hierarchy process[J].Journal of Electric Power Science and Technology,2008,23(1):56-59.
    [19] 邢雅,侯峰,樊博,等.基于改进K-means聚类的变压器局部放电定位诊断方法[J].智慧电力,2023,51(3):53-58. XING Ya,HOU Feng,FAN Bo,et al.Transformer partial discharge fault location and diagnosis based on improved K-means clustering algorithm[J].Smart Power,2023,51(3):53-58.
    相似文献
    引证文献
引用本文

郑文杰,谭慧娟,赵瑞锋,等.基于ARIMA‑LSTM‑RBF组合模型的风机出力短期预测[J].电力科学与技术学报,2024,39(4):153-159,186.
ZHENG Wenjie, TAN Huijuan, ZHAO Ruifeng, et al. Short‑term output prediction of wind turbine based on ARIMA‑LSTM‑RBF combined model[J]. Journal of Electric Power Science and Technology,2024,39(4):153-159,186.

复制
分享
文章指标
  • 点击次数:163
  • 下载次数: 723
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2024-09-10
文章二维码