基于多传热模型数值仿真的风电机组叶片气热防除冰性能强化
CSTR:
作者:
作者单位:

(1.国家电力投资集团江西吉安新能源有限公司,江西 吉安 330096;2.长沙理工大学电气与信息工程学院,湖南 长沙 410114;3.国网湖南省电力公司防灾减灾中心(电网输变电设备防灾减灾国家重点实验室),湖南 长沙 410100)

通讯作者:

李 杰(1990—),男,博士,讲师,主要从事相变储能、风机防冰等研究;E?mail:lijie@csust.edu.cn

中图分类号:

TM315

基金项目:

国家自然科学基金(52208094)


Performance enhancement of gas heat prevention and deicing of wind turbine blades based on numerical simulation of multi‑heat transfer model
Author:
Affiliation:

(1.Jiangxi Ji'an New Energy Co., Ltd., State Power Investment Group, Nanchang 330000, China;2.School of Electrical & Information Engineering, Changsha University of Science & Technology, Changsha 410114, China;3.Disaster Prevention and Mitigation Center of State Grid Hunan Electric Power Company(State Key Laboratory of Disaster Prevention and Mitigation for power transmission and transformation Equipment),Changsha 410100, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • | | | |
  • 文章评论
    摘要:

    风电机组叶片结冰给风电场的运行安全和发电效益带来双重困扰,迫切需求对结冰较严重的风电机组进行除冰。气热除冰是一种叶片主动抗冰技术,热风热量通过导热—对流综合作用由叶片内表面向外表面传递,融化其上覆冰层。单纯从传热流程来看,气热除冰过程中的热对流和热传导流程并不十分复杂,可以通过系统实验和数值模拟2种方法研究其流动传热特性。然而,实验所需条件较为苛刻,实验成本也较高。针对此问题,基于k-ε湍流模型、速度—压力耦合算法及壁面函数等技术建立风机叶片内、外两侧流动与传热耦合模型,分析导热—对流综合作用下的气热防除冰效果,避免传统数值模型只考虑单侧流动与传热的分离式缺陷,能准确获取特定工况下叶片内腔速度场、温度场、压力场以及叶片外壁温度分布,为合理的除冰系统设计及运行控制提供技术指导。研究结果表明:在不同的送风风速下,叶片表面温度分布呈现两端高、中间低的趋势,且随着风速提升,温度不均衡现象得到了明显改善。当送风风速小于15 m/s时,叶片大部分区域表面温度低于0 ℃,送风风速增大到20 m/s时表面温度低于0 ℃区域面积显著减少。

    Abstract:

    Ice formation on wind turbine blades poses dual challenges to the operational safety and power generation efficiency of wind farms, making it urgent to de-ice wind turbines with severe icing. Air thermal deicing is an active anti-icing technology for blades, where hot air transfers heat from the inner surface to the outer surface of the blade through a combination of conduction and convection, melting the overlying ice layer. From the perspective of the heat transfer process alone, the processes of convective and conductive heat transfer in air thermal deicing are not particularly complex and can be studied through two methods: systematic experimentation and numerical simulation, to investigate their flow and heat transfer characteristics. However, the conditions required for experimentation are quite demanding, and the experimental costs are relatively high. To address this issue, a coupled flow and heat transfer model for both the inner and outer sides of the turbine blade is established based on technologies such as the k-ε turbulence model, velocity-pressure coupling algorithm, and wall function. This model analyzes the effectiveness of air thermal deicing under the combined effects of conduction and convection, avoiding the separated defects of traditional numerical models that only consider unilateral flow and heat transfer. It can accurately obtain the velocity field, temperature field, pressure field inside the blade cavity, as well as the temperature distribution on the outer wall of the blade under specific operating conditions, providing technical guidance for the design and operational control of a reasonable deicing system. The research results indicate that under different air supply velocities, the temperature distribution on the blade surface shows a trend of being higher at both ends and lower in the middle, and as the air velocity increases, the temperature imbalance phenomenon is significantly improved. When the air supply velocity is less than 15 m/s, the surface temperature of most areas of the blade is below 0 ℃, but when the air supply velocity increases to 20 m/s, the area with a surface temperature below 0 ℃ is significantly reduced.

    参考文献
    [1] 于洪明,于良峰,游慧鹏,等.风电叶片防冰除冰技术的研究进展[J].材料导报,2016,30(27): 220-222+251. YU Hongming,YU Liangfeng,YOU Huipeng,et al.Research progress of anti-icing and deicing technology for wind turbine blades[J].Materials Review,2016,30 (27): 220-222+251.
    [2] 刘军,龚健荣,孙瑜,等.虑风电不确定性的中长期合同电量分解[J].电力科学与技术学报,2021,36(3): 84-91. LIU Jun,GONG Jianrong,SUN Yu,et al.Mid-long term contract energy decomposition considering wind power uncertainty[J].Journal of Electric Power Science and Technology,2021,36(3): 84-91.
    [3] 白宏伟,代海涛,刘伟超,等.冰冻气候下的风电叶片及其抗冰冻技术[J].风能产业,2015(3): 22-29. BAI Hongwei,DAI Haitao,LIU Weichao,et al.Wind turbine blade and its anti-freezing technology in freezing climate[J].Wind Energy Industry,2015(3): 22-29.
    [4] 王延明,倪爱清,王继辉,等.电热元件—疏水涂层复合除冰系统的实验研究[J].玻璃钢/复合材料,2016 (8): 68-72. WANG Yanming,NI AiQing,WANG Jihui,et al.Experimental study of hybrid de-icing systems combining the rmoelectric and hydrophobic coatings[J].Fiber Reinforced Plastics/Composites,2016 (8): 68-72.
    [5] MA L,ZHANG Z,GAO L,et al.An exploratory study on using slippery-liquid-infused-porous-surface (SLIPS) for wind turbine icing mitigation[J].Renewable Energy,2020,162: 2344-2360.
    [6] 顾海雷,张云芳.飞机外表面气热防冰专利技术发展分析[J].中国新技术新产品,2017(17):109-110. GU Hailei,ZHANG Yunfang.analysis on the development of patent technology of air-thermal anti-icing on the outer surface of aircraft[J].New Technology & New Products of China,2017(17): 109-110.
    [7] 舒立春,戚家浩,胡琴,等.风机叶片电加热防冰模型及分区防冰方法[J].中国电机工程学报,2017,37(5): 1448-1455. SHU Lichun,QI JiaHao,HU Qin,et al.Anti-icing model and sectionalized anti-icing method by electrical heating for wind turbine blades[J].Proceedings of the CSEE,2017,37(5): 1448-1455.
    [8] GUO W,DONG X,LI Y,et al.Simulations on vibration mode and distribution of shear stress for icing aluminum plate excited by ultrasonic vibration[J].Advances in Mechanical Engineering,2020,12(3): 75-85.
    [9] YASLIK A D,DE WITT K J,KEITH JR T G,et al.Three-dimensional simulation of electrothermal deicing systems[J].Journal of Aircraft,1992,29(6): 1035-1042.
    [10] 郭向华,邓锋华,肖雁,等.基于数值模拟与风洞试验的多分裂导线阻力系数干扰效应[J].电力科学与技术学报,2022,37(1): 186-192. GUO Xianghua,DENG Fenghua,XIAO Yan,et al.Study of interference effect of bundled conductors drag coefficient based on numerical simulation and wind tunnel test[J].Journal of Electric Power Science and Technology,2022,37(1): 186-192.
    [11] 邹建章,张丹丹,张 宇,等.湍流度对二分裂新月形覆冰绞股导线气动力特性的影响研究[J]. 高压电器,2023,59(3):78-85. ZOU Jianzhang,ZHANG Dandan,ZHANG Yu,et al. Study on effect of turbulivity on aerodynamic characteristics of two-bundled crescent-shaped ice-covered stranded wire[J]. High Voltage Apparatus,2023,59(3):78-85.
    [12] 许扬,蔡安民,吴梓秋,等.基于BP神经网络和多因素权重分析的气热除冰温度影响因素研究[J].热力发电,2022,51(12):131-140. XU Yang,CAI Anming,WU Ziqiu,et al.Influencing factors of air thermal deicing temperature based on BP neural network and multi-factor weight analysis[J].Thermal Power Generation,2022,51(12):131-140.
    [13] 冯学斌,杨文涛,陈海根,等.大型风电机组叶片的气热抗冰关键技术及工程应用实践[J].太阳能,2019(2):61-66. FENG Xuebing,YANG Wentao,CHEN Haigen,et al.Key technology and engineering application of air-thermal ice resistance of large-scale wind turbine blades[J].Solar Energy,2019(2):61-66.
    [14] 罗玉平,舒禹,黄宜健,等.风力发电机组叶片气热法防除冰系统设计[J].机械与电子,2021,39(1):34-37+42. LUO Yuping,SHU Yu,HUANG Yijian,et al.Design of antiiciang/deicing system for wind turbine blades by air heating method[J].Machinery&Electronics,2021,39(1):34-37+42.
    [15] 杨博,宁立伟,魏克湘,等.基于汽热法风力机叶片除冰传热分析[J].玻璃钢/复合材料,2018 (4):68-73. YANG Bo,NING Liwei,WEI Kexiang,et al.Heat transfer analysis of wind turbine blade deicing based on steam thermal method[J].Fiberglass Reinforced Plastics/Composites,2018(4):68-73.
    [16] 李伟,王顺燕,文飞,等.风力机防除冰的复合材料叶片传热分析与试验研究[J].复合材料科学与工程,2022(9): 76-82. LI Wei,WANG Shunyan,WEN Fei,et al.Research on heat transfer analysis and test of wind turbine composite blade for anticing and deicing[J].Composites Science and Engineering,2022(9): 76-82.
    [17] 邱刚,舒立春,胡琴,等.风力发电机叶片防冰的数值计算模型及现场试验研究[J].中国电机工程学报,2018,38(7):2198-2204+2235. QIU Gang,SHU Lichun,HU Qin,et al.Numerical anti-icing model and field experimental investigation of wind turbine blade[J].Proceedings of the CSEE,2018,38(7):2198-2204+2235.
    [18] 于周,舒立春,胡琴,等.风机叶片气动脉冲除冰结构脱冰计算模型及试验验证[J].电工技术学报,2023,38(13):3630-3639. YU Zhou,SHU Lichun,HU Qin,et al.De-icing calculation model of pneumatic impulse de-icing structure for wind turbine blades and experiment verification[J].Transactions of China Electrotechnical Society,2023,38(13):3630-3639.
    [19] GAO L,VEERAKUMAR R,LIU Y,et al.Quantification of the 3D shapes of the ice structures accreted on a wind turbine airfoil model[J].Journal of Visualization,2019,22(4): 661-667.
    [20] 王昭力,刘小春,文飞,等.2 MW风机叶片气热法防除冰的传热试验研究[J].可再生能源,2022,40(3):356-361. WANG Zhaoli,LIU Xiaochun,WEN Fei,et al.Heat transfer test research on air heating antiicing/deicing of 2 MW wind turbine blades[J].Renewable Energy Resources,2022,40(3): 356-361.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘忠德,周 强,雷和林,等.基于多传热模型数值仿真的风电机组叶片气热防除冰性能强化[J].电力科学与技术学报,2024,39(4):160-168.
LIU Zhongde, ZHOU Qiang, LEI Helin, et al. Performance enhancement of gas heat prevention and deicing of wind turbine blades based on numerical simulation of multi‑heat transfer model[J]. Journal of Electric Power Science and Technology,2024,39(4):160-168.

复制
分享
文章指标
  • 点击次数:255
  • 下载次数: 735
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2024-09-10
文章二维码