基于多传热模型数值仿真的风电机组叶片气热防除冰性能强化
作者:
作者单位:

(1.国家电力投资集团江西吉安新能源有限公司,江西 吉安 330096;2.长沙理工大学电气与信息工程学院,湖南 长沙 410114;3.国网湖南省电力公司防灾减灾中心(电网输变电设备防灾减灾国家重点实验室),湖南 长沙 410100)

作者简介:

通讯作者:

李 杰(1990—),男,博士,讲师,主要从事相变储能、风机防冰等研究;E?mail:lijie@csust.edu.cn

中图分类号:

TM315

基金项目:

国家自然科学基金(52208094)


Performance enhancement of gas heat prevention and deicing of wind turbine blades based on numerical simulation of multi‑heat transfer model
Author:
Affiliation:

(1.Jiangxi Ji'an New Energy Co., Ltd., State Power Investment Group, Nanchang 330000, China;2.School of Electrical & Information Engineering, Changsha University of Science & Technology, Changsha 410114, China;3.Disaster Prevention and Mitigation Center of State Grid Hunan Electric Power Company(State Key Laboratory of Disaster Prevention and Mitigation for power transmission and transformation Equipment),Changsha 410100, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    风电机组叶片结冰给风电场的运行安全和发电效益带来双重困扰,迫切需求对结冰较严重的风电机组进行除冰。气热除冰是一种叶片主动抗冰技术,热风热量通过导热—对流综合作用由叶片内表面向外表面传递,融化其上覆冰层。单纯从传热流程来看,气热除冰过程中的热对流和热传导流程并不十分复杂,可以通过系统实验和数值模拟2种方法研究其流动传热特性。然而,实验所需条件较为苛刻,实验成本也较高。针对此问题,基于k-ε湍流模型、速度—压力耦合算法及壁面函数等技术建立风机叶片内、外两侧流动与传热耦合模型,分析导热—对流综合作用下的气热防除冰效果,避免传统数值模型只考虑单侧流动与传热的分离式缺陷,能准确获取特定工况下叶片内腔速度场、温度场、压力场以及叶片外壁温度分布,为合理的除冰系统设计及运行控制提供技术指导。研究结果表明:在不同的送风风速下,叶片表面温度分布呈现两端高、中间低的趋势,且随着风速提升,温度不均衡现象得到了明显改善。当送风风速小于15 m/s时,叶片大部分区域表面温度低于0 ℃,送风风速增大到20 m/s时表面温度低于0 ℃区域面积显著减少。

    Abstract:

    Ice formation on wind turbine blades poses dual challenges to the operational safety and power generation efficiency of wind farms, making it urgent to de-ice wind turbines with severe icing. Air thermal deicing is an active anti-icing technology for blades, where hot air transfers heat from the inner surface to the outer surface of the blade through a combination of conduction and convection, melting the overlying ice layer. From the perspective of the heat transfer process alone, the processes of convective and conductive heat transfer in air thermal deicing are not particularly complex and can be studied through two methods: systematic experimentation and numerical simulation, to investigate their flow and heat transfer characteristics. However, the conditions required for experimentation are quite demanding, and the experimental costs are relatively high. To address this issue, a coupled flow and heat transfer model for both the inner and outer sides of the turbine blade is established based on technologies such as the k-ε turbulence model, velocity-pressure coupling algorithm, and wall function. This model analyzes the effectiveness of air thermal deicing under the combined effects of conduction and convection, avoiding the separated defects of traditional numerical models that only consider unilateral flow and heat transfer. It can accurately obtain the velocity field, temperature field, pressure field inside the blade cavity, as well as the temperature distribution on the outer wall of the blade under specific operating conditions, providing technical guidance for the design and operational control of a reasonable deicing system. The research results indicate that under different air supply velocities, the temperature distribution on the blade surface shows a trend of being higher at both ends and lower in the middle, and as the air velocity increases, the temperature imbalance phenomenon is significantly improved. When the air supply velocity is less than 15 m/s, the surface temperature of most areas of the blade is below 0 ℃, but when the air supply velocity increases to 20 m/s, the area with a surface temperature below 0 ℃ is significantly reduced.

    参考文献
    相似文献
    引证文献
引用本文

刘忠德,周 强,雷和林,等.基于多传热模型数值仿真的风电机组叶片气热防除冰性能强化[J].电力科学与技术学报,2024,39(4):160-168.
LIU Zhongde, ZHOU Qiang, LEI Helin, et al. Performance enhancement of gas heat prevention and deicing of wind turbine blades based on numerical simulation of multi‑heat transfer model[J]. Journal of Electric Power Science and Technology,2024,39(4):160-168.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-10
  • 出版日期:
文章二维码