基于多目标投影寻踪模型的电力发展水平评价方法
作者:
作者单位:

(1.上海电力大学经济与管理学院,上海 200090;2.中国电力工程顾问集团华东电力设计院有限公司, 上海 200000;3.上海海事大学经济管理学院,上海 201306)

通讯作者:

冷亚军(1985—),男,博士,副教授,主要从事综合能源系统评价、数据挖掘等方面的研究;E?mail:huayi2001@163.com

中图分类号:

TM73

基金项目:

国家自然科学基金项目(71971135);教育部人文社会科学研究青年基金项目(No.22YJCZH073)


Evaluating method for power development level based on multi‑objective projection pursuit model
Author:
Affiliation:

(1.College of Economics and Management, Shanghai University of Electric Power, Shanghai 200090, China; 2. East China Electric Power Design Institute Co., Ltd., China Electric Power Consulting Group, Shanghai 200000, China;3.School of Economics and Management, Shanghai Maritime University, Shanghai 201306, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    电力生产活动所释放的碳排放在全球碳排放总量中占比较高。因此,电力行业成为推动“碳减排”目标达成的关键责任主体。借助量化综合评价的方式对国家电力发展水平进行评估,不仅可以清晰地描绘出各国在电力领域的发展脉络,而且有助于更准确地识别出中国与其他国家在电力发展上的差距。该文对国家电力发展水平进行综合评价与研究,提出一种基于改进多目标粒子群算法优化投影寻踪模型的电力发展水平评价方法。首先,提出改进的多目标粒子群优化算法;其次,建立2种投影寻踪模型,利用改进的多目标粒子群算法优化构建2种投影寻踪模型,得到投影向量的最优Pareto解集;再次,利用模糊综合评价,得到最优权重折中解,将最优权重代入前景理论模型,得到各个国家电力发展水平的综合评分值,并基于此评分,对各国电力发展水平优劣进行客观排序,最后,利用实际的国家电力发展水平数据集对该文所提方法进行验证。研究结果表明:该方法可实现对国家电力发展水平的有效排序,其评价准确性优于现有的电力发展水平评价方法的。

    Abstract:

    Carbon emissions from electricity production activities account for a significant proportion of total global emissions. Therefore, the power industry has become a key stakeholder in achieving "carbon emission reduction" goals. By employing a quantitative comprehensive evaluation approach to assess national power development levels, we can not only clearly delineate the development trajectory of various countries in the power sector but also more accurately identify the gaps between China and other countries in power development. This paper conducts a comprehensive evaluation and research on national power development levels and proposes an evaluation method for power development levels based on an improved multi-objective particle swarm optimization (MOPSO) algorithm to optimize the projection pursuit model. Firstly, an improved MOPSO algorithm is proposed. Secondly, two projection pursuit models are established, and further optimized using the improved MOPSO algorithm to obtain the optimal Pareto solution set for the projection vectors. Finally, a fuzzy comprehensive evaluation is used to obtain the optimal weight compromise solution, which is then substituted into the prospect theory model to derive comprehensive scores for the power development levels of various countries. Based on these scores, an objective ranking of the power development levels of various countries is conducted. The proposed method is validated using an actual dataset of national power development levels. The experimental results demonstrate that this method can effectively rank national power development levels, with evaluation accuracy superior to existing evaluation methods for power development levels.

    参考文献
    [1] 郝如海,智勇,祁莹,等.基于熵权法的新能源高渗透率送端电网风险模糊综合评价[J].电力科学与技术学报,2021,36(1):73-78. HAO Ruhai,ZHI Yong,QI Ying,et al.Fuzzy synthetic evaluation based on entropy method of high renewable energy penetration power grid at sending end[J].Journal of Electric Power Science and Technology,2021,36(1):73-78.
    [2] SHI K F,CHEN Y,YU B L,et al.Modeling spatiotemporal CO2 (carbon dioxide) emission dynamics in China from DMSP-OLS nighttime stable light data using panel data analysis[J].Applied Energy,2016,168:523-533.
    [3] KONG X,WANG H Y,LI N,et al.Multi-objective optimal allocation and performance evaluation for energy storage in energy systems[J].Energy,2022,253:124061.
    [4] 许洪华,邵桂萍,鄂春良,等.我国未来能源系统及能源转型现实路径研究[J].发电技术,2023,44(4):484-491. XU Honghua,SHAO Guiping,E Chunliang,et al.Research on China's future energy system and the realistic path of energy transformation[J].Power Generation Technology,2023,44(4):484-491.
    [5] QIAN J X,WU J H,YAO L,et al.Comprehensive performance evaluation of Wind-Solar-CCHP system based on emergy analysis and multi-objective decision method[J].Energy,2021,230:120779.
    [6] CHEN C,LONG H L,ZENG X T.Planning a sustainable urban electric power system with considering effects of new energy resources and clean production levels under uncertainty:a case study of Tianjin,China[J].Journal of Cleaner Production,2018,173:67-81.
    [7] ZHAO D F,LI C B,WANG Q Q,et al.Comprehensive evaluation of national electric power development based on cloud model and entropy method and TOPSIS:a case study in 11 countries[J].Journal of Cleaner Production,2020,277:123190.
    [8] ZHOU Y,ZHOU N R,GONG L H,et al.Prediction of photovoltaic power output based on similar day analysis,genetic algorithm and extreme learning machine[J].Energy,2020,204:117894.
    [9] 孙彦龙,康重庆,陈宋宋,等.低碳电网评价指标体系与方法[J].电力系统自动化,2014,38(17):157-162. SUN Yanlong,KANG Chongqing,CHEN Songsong,et al.Low-carbon power grid index system and evaluation method[J].Automation of Electric Power Systems,2014,38(17):157-162.
    [10] 李君卫,余洋,蒋衍君,等.面向电网调峰的负荷友好性评价[J].电力系统自动化,2023,47(20):115-124. LI Junwei,YU Yang,JIANG Yanjun,et al.Load friendliness evaluation for peak regulation of power grid[J].Automation of Electric Power Systems,2023,47(20):115-124.
    [11] HE Y X,PANG Y X,ZHANG Q,et al.Comprehensive evaluation of regional clean energy development levels based on principal component analysis and rough set theory[J].Renewable Energy,2018,122:643-653.
    [12] 李星梅,钟志鸣,阎洁.大规模风电接入下的火电机组灵活性改造规划[J].电力系统自动化,2019,43(3):51-57. LI Xingmei,ZHONG Zhiming,YAN Jie.Flexibility reformation planning of thermal power units with large-scale integration of wind power[J].Automation of Electric Power Systems,2019,43(3):51-57.
    [13] 潘超,王锦鹏,包钰婷,等.考虑源荷侧灵活性资源的风光消纳互动调控[J].智慧电力,2023,51(1):1-8. PAN Chao,WANG Jinpeng,BAO Yuting,et al.Interactive control of wind and photovoltaic power consumption considering source-load side flexible resources[J].Smart Power,2023,51(1):1-8.
    [14] ADEFARATI T,BANSAL R C.Reliability,economic and environmental analysis of a microgrid system in the presence of renewable energy resources[J].Applied Energy,2019,236:1089-1114.
    [15] 朱天曈,丁坚勇,郑旭.基于改进TOPSIS法和德尔菲:熵权综合权重法的电网规划方案综合决策方法[J].电力系统保护与控制,2018,46(12):91-99. ZHU Tiantong,DING Jianyong,ZHENG Xu.A comprehensive decision-making method for power network planning schemes based on the combination of the improved TOPSIS method with Delphi-entropy weight method[J].Power System Protection and Control,2018,46(12):91-99.
    [16] 马速良,武亦文,李建林,等.面向多服务目标需求的集中式电池储能优化配置方法研究[J].高压电器,2023,59(7):75-86. MA Suliang,WU Yiwen,LI Jianlin,et al.Research on optimal configuration of centralized battery energy storage for multiple service objectives[J].High Voltage Apparatus,2023,59(7):75-86.
    [17] HE Y X,JIAO Z,YANG J.Comprehensive evaluation of global clean energy development index based on the improved entropy method[J].Ecological Indicators,2018,88:305-321.
    [18] 乔龙,楼文高,高春昌.一维投影寻踪聚类模型指标性质判断与实证研究[J].数学的实践与认识,2020,50(17):1-9. QIAO Long,LOU Wengao,GAO Chunchang.Judgment of the attribute of indicator in one-dimension projection pursuit clustering model and its positive research[J].Mathematics in Practice and Theory,2020,50(17):1-9.
    [19] 楼文高,乔龙.投影寻踪分类建模理论的新探索与实证研究[J].数理统计与管理,2015,34(1):47-58. LOU Wengao,QIAO Long.New theory exploration of projection pursuit clustering model and its positive research[J].Journal of Applied Statistics and Management,2015,34(1):47-58.
    [20] 冯茜,李擎,全威,等.多目标粒子群优化算法研究综述[J].工程科学学报,2021,43(6):745-753. FENG Qian,LI Qing,QUAN Wei,et al.Overview of multiobjective particle swarm optimization algorithm[J].Chinese Journal of Engineering,2021,43(6):745-753.
    [21] 张冲,荣娜.基于改进粒子群算法的新能源侧储能容量配置[J].电网与清洁能源,2022,38(10):98-105. ZHANG Chong,RONG Na.Energy storage capacity allocation of renewable energy side based on improved particle swarm optimization[J].Power System and Clean Energy,2022,38(10):98-105.
    [22] GHORBANI N,KASAEIAN A,TOOPSHEKAN A,et al.Optimizing a hybrid wind-PV-battery system using GA-PSO and MOPSO for reducing cost and increasing reliability[J].Energy,2018,154:581-591.
    [23] 陈志刚,梁涤青,邓小鸿,等.Logistic混沌映射性能分析与改进[J].电子与信息学报,2016,38(6):1547-1551. CHEN Zhigang,LIANG Diqing,DENG Xiaohong,et al.Performance analysis and improvement of logistic chaotic mapping[J].Journal of Electronics & Information Technology,2016,38(6):1547-1551.
    [24] 孙鹏,罗明武,孙朝霞,等.采用改进杜鹃搜索算法的主动配电网双层分布式风电规划方法[J].电网技术,2016,40(9):2743-2751. SUN Peng,LUO Mingwu,SUN Zhaoxia,et al.An improved approach based on cuckoo search algorithm for bi-level distributed wind generation planning in active distribution network[J].Power System Technology,2016,40(9):2743-2751.
    [25] 惠慧,李蕊,朱逸镝,等.含高比例分布式光伏的配电网多目标概率规划方法[J].电测与仪表,2023,60(11):2-10. HUI Hui,LI Rui,ZHU Yidi,et al.Multi-objective probabilistic planning method for distribution network with high proportion of distributed photovoltaic[J].Electrical Measurement & Instrumentation,2023,60(11):2-10.
    [26] 冷亚军,岳鑫,卢毅勤,等.基于最小叉熵与前景理论的综合能源系统评价方法[J].智慧电力,2021,49(6):40-45+90. LENG Yajun,YUE Xin,LU Yiqin,et al.Integrated energy system evaluation method based on minimum cross entropy and prospect theory[J].Smart Power,2021,49(6):40-45+90.
    [27] 邵一凡,禹春霞,禹嘉诚.基于改进NSGA-Ⅱ算法的云制造服务组合优化研究[J].运筹与管理,2022,31(11):30-36. SHAO Yifan,YU Chunxia,YU Jiacheng.Cloud manufacturing service composition optimization based on improved NSGA?Ⅱ algorithm[J].Operations Research and Management Science,2022,31(11):30-36.
    [28] 冷亚军,吴宗育,赵文会,等.基于近邻传播聚类权重的黑启动方案评估方法[J].电力系统自动化,2020,44(13):73-80. LENG Yajun,WU Zongyu,ZHAO Wenhui,et al.Assessment method of black-start scheme based on affinity propagation clustering weight[J].Automation of Electric Power Systems,2020,44(13):73-80.
    [29] 胡伟,杨梓俊,王瑾然,等.园区综合能源系统日前多目标优化调度[J].电力科学与技术学报,2021,36(1):13-20. HU Wei,YANG Zijun,WANG Jinran,et al.Multi-objective optimal scheduling of integrated energy system in the industry park[J].Journal of Electric Power Science and Technology,2021,36(1):13-20.
    [30] 冷亚军,刘鹏飞,时浩.考虑不完全信息的电力系统黑启动方案评估方法[J].电力科学与技术学报,2020,35(6):99-109. LENG Yajun,LIU Pengfei,SHI Hao.Evaluation method of power system black start scheme considering incomplete information[J].Journal of Electric Power Science and Technology,2020,35(6):99-109.
    [31] 于群,霍筱东,何剑,等.基于斯皮尔曼相关系数和系统惯量的中国电网停电事故趋势预测[J].中国电机工程学报,2023,43(14):5372-5381. YU Qun,HUO Xiaodong,HE Jian,et al.Trend prediction of power blackout accidents in Chinese power grid based on Spearman’s correlation coefficient and system inertia[J].Proceedings of the CSEE,2023,43(14):5372-5381.
    相似文献
    引证文献
引用本文

李小双,冷亚军,吴 坚.基于多目标投影寻踪模型的电力发展水平评价方法[J].电力科学与技术学报,2024,39(5):46-57.
LI Xiaoshuang, LENG Yajun, WU Jian. Evaluating method for power development level based on multi‑objective projection pursuit model[J]. Journal of Electric Power Science and Technology,2024,39(5):46-57.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2024-12-02
文章二维码