基于IAR‑CI模型的配变重过载预测方法
作者:
作者单位:

(1.国网河南省电力公司三门峡供电公司,河南 三门峡 472000;2.国网河南省电力公司卢氏县供电公司,河南 三门峡 472200;3.长沙理工大学电气与信息工程学院,湖南 长沙 410114)

通讯作者:

孙辰昊(1991—),男,博士,讲师,主要从事电力大数据及人工智能理论等方面的研究;E?mail:chenhaosun@csust.edu.cn

中图分类号:

TM421

基金项目:

国网河南省电力公司科技项目资助(5217I0230002)


Overload prediction method of distribution transformer based on IAR‑CI model
Author:
Affiliation:

(1.Sanmenxia Electric Company, State Grid Hebei Electric Power Co., Ltd., Sanmenxia 472000, China; 2.Lushi Electric Company, State Grid Hebei Electric Power Co., Ltd., Sanmenxia 472200, China;3.School of Electrical &Information Engineering, Changsha University of Science & Technology, Changsha 410114, China )

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    随着电力系统的数字化和智能化发展,配变重过载预测成为了实现智能状态检修的关键技术之一。配变过载时空因子在现实场景中通常呈偏置分布。其中,部分高风险罕见(high risk and rare, HRR)因子一旦出现,将对变压器造成无法逆转的伤害。为此,该文提出一种基于提高关联规则关键重要性(improved association rules?criticality importance,IAR?CI)模型的配变过载预测方法。首先,考虑内部与外部因素,收集多个数据源并建立配变运行状态数据库,且通过ICA识别与配变重过载强关联的罕见高危时段与HRR;其次,基于关键性重要度(criticality importance,CI)度量计算,设计一种因子权重计算方法,准确衡量因子的风险权重;最后,应用TBFP?Growth算法,增强模型的运行效率。采用中国南方某地区电网数据进行算例仿真。研究表明,该方法能够提升配变重过载的预测性能,有助于后续巡检、检测策略的合理统筹和科学规划,可在降低电力设备运维检修成本的同时提高供电的可靠性。

    Abstract:

    With the digitization and intellectualization of power systems, the prediction of distribution transformer overload has become one of the key technologies for realizing intelligent condition-based maintenance. In real-world scenarios, the spatiotemporal factors of distribution transformer overload often exhibit a biased distribution, among which some high-risk and rare (HRR) factors, once occurred, can cause irreversible damage to transformers and should not be ignored. Therefore, this paper proposes a prediction method for distribution transformer overload based on the improved association rules-criticality importance (IAR-CI ) model. Firstly, considering both internal and external factors, multiple data sources are collected to establish a database of distribution transformer operating states, and ICA is used to identify rare high-risk periods and HRR factors that are strongly associated with severe transformer overload. Secondly, based on the criticality importance (CI) metric calculation, a factor weighting method is designed to accurately measure the risk weight of each factor. Finally, the TBFP-Growth algorithm is applied to enhance the operational efficiency of the model. Simulation analysis conducted in a region in southern China demonstrates that the proposed method can improve the prediction performance of severe distribution transformer overload, facilitating the reasonable planning and scientific scheduling of subsequent inspection and testing strategies. This reduces the operation and maintenance costs of power equipment while enhancing the reliability of power supply.

    参考文献
    [1] 王艳,李伟,赵洪山,等.基于油中溶解气体分析的DBN-SSAELM变压器故障诊断方法[J].电力系统保护与控制,2023,51(4):32-42. WANG Yan,LI Wei,ZHAO Hongshan,et al.Transformer DGA fault diagnosis method based on DBN-SSAELM[J].Power System Protection and Control,2023,51(4):32-42.
    [2] 刘志坚,何蔚,刘航,等.基于格拉姆角场变换和深度压缩模型的变压器故障识别方法[J].电网技术,2023,47(4):1478-1490. LIU Zhijian,HE Wei,LIU Hang,et al.Fault identification method for power transformer based on gramian angular field transformation and deep compression model[J].Power System Technology,2023,47(4):1478-1490.
    [4] 林少娃,陈奕汝,顾洁,等.基于隐含狄利克雷分布主题模型和特征级异构数据融合的电力故障主动性预警研究[J].电子器件,2022,45(2):432-438. LIN Shaowa,CHEN Yiru,GU Jie,et al.Proactive warning system based on electronic power user interactive complaint text and multi-source heterogeneous big data analysis[J].Chinese Journal of Electron Devices,2022,45(2):432-438.
    [5] LI M,ZHOU Q.Distribution transformer mid-term heavy load and overload pre-warning based on logistic regression[C]//2015 IEEE Eindhoven PowerTech.Eindhoven,Netherlands.IEEE,2015:1-5.[LinkOut]
    [6] WU Q,CHEN Z,SU H T,et al.Heavy overload forecasting of distribution transformers based on XGBoost[C]//2019 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC).Macao,China.IEEE,2019:1-5.
    [7] 陈毅波,郑玲,姚建刚.基于粗糙集理论与D-S证据理论改进的多元回归负荷预测方法研究[J].电力系统保护与控制,2016,44(6):62-67. CHEN Yibo,ZHENG Ling,YAO Jiangang.Improved multiple regression load forecasting method based on rough set theory and D-S evidence theory[J].Power System Protection and Control,2016,44(6):62-67.
    [8] 胡剑,王建,熊小伏,等.计及线路动态电热特性的交直流混联电网过载控制策略[J].电力系统保护与控制,2020,48(7):66-75. HU Jian,WANG Jian,XIONG Xiaofu,et al.An overload control strategy for AC/DC hybrid power grid considering dynamic electro-thermal characteristics of transmission lines[J].Power System Protection and Control,2020,48(7):66-75.
    [9] 郝钰,石华林,范瑞祥,等.基于动态热路模型的配电变压器过载工况下温升研究[J].变压器,2020,57(12):22-26. HAO Yu,SHI Hualin,FAN Ruixiang,et al.Study on temperature rise of distribution transformer under overload condition based on dynamic thermal circuit model[J].Transformer,2020,57(12):22-26.
    [10] 李元,刘宁,梁钰,等.基于温升特性的油浸式变压器负荷能力评估模型[J].中国电机工程学报,2018,38(22):6737-6746. LI Yuan,LIU Ning,LIANG Yu,et al.A model of load capacity assessment for oil-immersed transformer by using temperature rise characteristics[J].Proceedings of the CSEE,2018,38(22):6737-6746.
    [11] 杜晓东,赵建利,刘科研,等.基于数字孪生的光伏高比例配电网过载风险预警方法[J].电力系统保护与控制,2022,50(9):136-144. DU Xiaodong,ZHAO Jianli,LIU Keyan,et al.Digital twin early warning method study for overload risk of distribution network with a high proportion of photovoltaic access[J].Power System Protection and Control,2022,50(9):136-144.
    [12] WU Y H,SUN X B,DAI B F,et al.A transformer fault diagnosis method based on hybrid improved grey wolf optimization and least squares-support vector machine[J].IET Generation,Transmission & Distribution,2022,16(10):1950-1963.
    [13] 夏正龙,陆良帅,吴启凡,等.改进灰狼算法在含风电的配电网无功优化中的应用[J].智慧电力,2023,51(6):63-70. XIA Zhenglong,LU Liangshuai,WU Qifan,et al.Application of improved grey wolf in reactive power optimization of distribution networks with wind power integration[J].Smart Power,2023,51(6):63-70.
    [14] 李云淏,咸日常,张海强,等.基于改进灰狼算法与最小二乘支持向量机耦合的电力变压器故障诊断方法[J].电网技术,2023,47(4):1470-1478.LI Yunhao,XIAN Richang,ZHANG Haiqiang,et al.Fault diagnosis for power transformers based on improved grey wolf algorithm coupled with least squares support vector machine[J].Power System Technology,2023,47(4):1470-1478.
    [15] 郭方洪,刘师硕,吴祥,等.基于联邦学习的含不平衡样本数据电力变压器故障诊断[J].电力系统自动化,2023,47(10):145-152. GUO Fanghong,LIU Shishuo,WU Xiang,et al.Federated learning based fault diagnosis of power transformer with unbalanced sample data[J].Automation of Electric Power Systems,2023,47(10):145-152.
    [16] 周秀,怡恺,李刚,等.基于邻域粗糙集与AMPOS-ELM的变压器DGA故障诊断[J].电力科学与技术学报,2022,37(3):157-164. ZHOU Xiu,YI Kai,LI Gang,et al.Atransformer DGA fault diagnosis approachbased on neighborhood rough set and AMPSO-ELM[J].Journal of Electric Power Science and Technology,2022,37(3):157-164.
    [17] LUO S M,RAO Y,CHEN J,et al.Short-term load forecasting model of distribution transformer based on CNN and LSTM[C]//2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE).Beijing,China.IEEE,2020:1-4.
    [18] 朱保军,咸日常,范慧芳,等.WRSR与改进朴素贝叶斯融合的变压器故障诊断技术研究[J].电力系统保护与控制,2021,49(20):120-128. ZHU Baojun,XIAN Richang,FAN Huifang,et al.Transformer fault diagnosis technology based on the fusion of WRSR and improved naive Bayes[J].Power System Protection and Control,2021,49(20):120-128.
    [19] 邱海枫,苏宁,田松林.改进支持向量机在电力变压器故障诊断中的应用研究[J].电测与仪表,2022,59(11):48-53. QIU Haifeng,SU Ning,TIAN Songlin.Research on the application of improved support vector machine in power transformer fault diagnosis[J].Electrical Measurement & Instrumentation,2022,59(11):48-53.
    [20] 何宁辉,朱洪波,李秀广,等.基于贝叶斯网络和假设检验的变压器故障诊断[J].电力科学与技术学报,2021,36(6):20-27. HE Ninghui,ZHU Hongbo,LI Xiuguang,et al.Transformer fault diagnosis based on Bayesian network and hypothesis testing[J].Journal of Electric Power Science and Technology,2021,36(6):20-27.
    [21] XIAO H,PEI W,WU L,et al.A novel deep learning based probabilistic power flow method for Multi-Microgrids distribution system with incomplete network information[J].Applied Energy,2023,335:120716.
    [22] 张朝龙,何怡刚,杜博伦,等.基于深度学习的电力变压器智能故障诊断方法[J].电子测量与仪器学报,2020,34(1):81-89. ZHANG Chaolong,HE Yigang,DU Bolun,et al.Intelligent fault diagnosis method of power transformer using deep learning[J].Journal of Electronic Measurement and Instrumentation,2020,34(1):81-89.
    [23] 马旭聪,唐文虎,牛哲文,等.非均衡数据集下基于孪生卷积网络的变压器绕组变形故障识别方法[J].高压电器,2023,59(10):120-128. MA Xucong,TANG Wenhu,NIU Zhewen,et al.Deformation fault identification method for transformer windings based on twin convolutional network under unbalanced data set[J].High Voltage Apparatus,2023,59(10):120-128.
    [24] 童光华,董亮,任永平,等.基于DBN和K-means聚类的配变重过载预警方法[J].现代电力,2021,38(5):492-501. TONG Guanghua,DONG Liang,REN Yongping,et al.Overload warning for distribution transformer based on DBN and K-means[J].Modern Electric Power,2021,38(5):492-501.
    [25] 谭贵生,曹生现,赵波,等.基于关联规则与变权重系数的变压器状态综合评估方法[J].电力系统保护与控制,2020,48(1):88-95. TAN Guisheng,CAO Shengxian,ZHAO Bo,et al.An assessment of power transformers based on association rules and variable weight coefficients[J].Power System Protection and Control,2020,48(1):88-95.
    [26] 宋继明,毛继兵,马卫华,等.基于深度神经网络的特高压变压器滤油注油过程故障诊断技术研究[J].电网与清洁能源,2023,39(12):95-103. SONG Jiming,MAO Jibing,MA Weihua,et al.Research on oil filtration and injection process fault diagnosis for ultrahigh voltage transformers based on deep neural networks[J].Power System and Clean Energy,2023,39(12):95-103.
    [27] 余飞娅,叶文波.基于FP-Growth算法的计量主站告警分析研究[J].电气自动化,2021,43(6):30-32+35. YU Feiya,YE Wenbo.Analysis and research on alarm of master MeteringStation based on FP-growth algorithm[J].Electrical Automation,2021,43(6):30-32+35.
    [28] 程江洲,聂玮瑶,张赟宁,等.基于FP-network关联规则挖掘算法的配电网薄弱点分析研究[J].电测与仪表,2021,58(3):47-53. CHENG Jiangzhou,NIE Weiyao,ZHANG Yunning,et al.Analysis and research on weak point of distribution network based on FP-network association rule mining algorithm[J].Electrical Measurement & Instrumentation,2021,58(3):47-53.
    [29] SINTHUJA M,PUVIARASAN N,ARUNA P.Mining frequent itemsets using proposed top-down approach based on linear prefix tree (TD-LP-growth)[M]//Lecture Notes on Data Engineering and Communications Technologies.Singapore:Springer Singapore,2018:23-32.
    [30] ESPINOZA S,POULOS A,RUDNICK H,et al.Risk and resilience assessment with component criticality ranking of electric power systems subject to earthquakes[J].IEEE Systems Journal,2020,14(2):2837-2848.
    [31] MIZIU?A P,NAVARRO J.Birnbaum importance measure for reliability systems with dependent components[J].IEEE Transactions on Reliability,2019,68(2):439-450.
    [32] 张立石,梁得亮,刘桦,等.基于小波变换与逻辑斯蒂回归的混合式配电变压器故障辨识[J].电工技术学报,2021,36(增刊2):467-476. ZHANG Lishi,LIANG Deliang,LIU Hua,et al.Fault identification of hybrid distribution transformer based on wavelet transform and logistic regression[J].Transactions of China Electrotechnical Society,2021,36(Sup 2):467-476.
    [33] 裴小邓,罗林,陈帅,等.面向电力变压器油中溶解气体的卷积神经网络诊断方法[J].辽宁石油化工大学学报,2020,40(5):79-85. PEI Xiaodeng,LUO Lin,CHEN Shuai,et al.A convolutional neural network diagnosis method for dissolved gas in power transformer oil[J].Journal of Liaoning Shihua University,2020,40(5):79-85.
    相似文献
    引证文献
引用本文

张少峰,王佳琳,李润润,等.基于IAR‑CI模型的配变重过载预测方法[J].电力科学与技术学报,2024,39(5):67-76.
ZHANG Shaofeng, WANG Jialin, LI runrun, et al. Overload prediction method of distribution transformer based on IAR‑CI model[J]. Journal of Electric Power Science and Technology,2024,39(5):67-76.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2024-12-02
文章二维码