一种实用的基于网络拓扑计算电气距离的方法
作者:
作者单位:

(广东工业大学自动化学院,广东 广州 510006)

通讯作者:

毛晓明(1971—),女,博士,副教授,主要从事电力系统运行分析与控制方面的研究;E?mail:mxmsunny@163.com

中图分类号:

TM711

基金项目:

广东省自然科学基金(2023A1515010716,2020B1515130001)


A practical method for calculating electrical distance based on network topology
Author:
Affiliation:

(School of Automation, Guangdong University of Technology, Guangzhou 510006, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    电气距离(electrical distance,ED)是电网划分电压控制区域的主要依据。经典的ED计算方法与其改进方法都需利用潮流雅可比矩阵,这可能在电源和负荷随机性不断增强的背景下导致分区方案的频繁调整,增加无功电压管理的难度。因此,该文先在回顾ED经典定义的基础上,证明利用网络拓扑参数可近似地获得电力系统中一对节点在小扰动后的电压变化比值;然后,沿用经典ED的计算公式,给出一种基于网络拓扑计算ED的新方法;最后,将该文方法应用于NE?39和NE?68节点系统中,将得到的结果与经典方法的ED和分区方案进行比较,验证了该方法的有效性。

    Abstract:

    Electrical distance (ED) is the primary basis for dividing voltage control areas in power grids. Both classic methods and their improved versions for calculating electrical distance rely on the power flow Jacobian matrix, which may lead to frequent adjustments in partitioning schemes and increase the difficulty of reactive power and voltage management as the randomness of power sources and loads continues to grow. Therefore, this paper first reviews the classic definition of electrical distance and then demonstrates that the ratio of voltage changes at a pair of nodes in a power system after a small disturbance can be approximately obtained using network topology parameters. Next, following the classic formula for calculating electrical distance, a new method for computing electrical distance based on network topology is presented. Finally, this method is applied to the NE-39 and NE-68 node systems, and the results are compared with those obtained using the classic method in terms of electrical distance and partitioning schemes, validating the effectiveness of the proposed approach.

    参考文献
    [1] 李益华,林文南.一种改进的Tabu Search算法及其在区域电网无功优化中的应用[J].电力科学与技术学报,2008,23(2):60-65. LI Yihua,LIN Wennan.Improved tabu search algorithm based reactive power optimization in regional power grid[J].Journal of Electric Power Science and Technology,2008,23(2):60-65.
    [2] 任鹏,李翀,陶鹏,等.基于加权熵TOPSIS法的电网节点脆弱度评估[J].电力科学与技术学报,2019,34(3):143-149. REN Peng,LI Chong,TAO Peng,et al.Node vulnerability evaluation for power network based on weighted entropy TOPSIS method[J].Journal of Electric Power Science and Technology,2019,34(3):143-149.
    [3] 粟世玮,张谦,熊炜,等.含高渗透可再生能源的动态网络重构与无功电压调整协同优化[J].电网与清洁能源,2023,39(1):100-110+119. SU Shiwei,ZHANG Qian,XIONG Wei,et al.Coordination optimization of dynamic network reconfiguration and reactive power voltage regulation with high penetration renewable energy generation[J].Power System and Clean Energy,2023,39(1):100-110+119.
    [4] LAGONOTTE P,SABONNADIERE J C,LEOST J Y,et al.Structural analysis of the electrical system:application to secondary voltage control in France[J].IEEE Transactions on Power Systems,1989,4(2):479-486.
    [5] 孙宏斌,郭庆来,张伯明.电力系统自动电压控制[M].北京:科学出版社,2018:95?98. SUN Hongbin,GUO Qinglai,ZHANG Baiming.Automatic voltage control for power systems[M].Beijing:Science Press,2018:95?98.
    [6] 余建树,李朝霞,龚雪娇,等.基于并行粒子群算法的电力系统分区抗差状态估计[J].电网技术,2022,46(8):3139-3149. YU Jianshu,LI Zhaoxia,GONG Xuejiao,et al.Robust state estimation of power system based on parallel particle swarm optimization and partition calculation[J].Power System Technology,2022,46(8):3139-3149.
    [7] 柯永超,廖凯,李波,等.基于双层优化规划的线路过载控制策略[J].电力自动化设备,2021,41(12):158-165. KE Yongchao,LIAO Kai,LI Bo,et al.Line overload control strategy based on bi-level optimization programming[J].Electric Power Automation Equipment,2021,41(12):158-165.
    [8] 郑吉祥,钟俊.基于节点类型和分区耦合性的复杂网络无功电压快速分区方法[J].电网技术,2020,44(1):223-230. ZHENG Jixiang,ZHONG Jun.A complex network theory fast partition algorithm of reactive voltage based on node type and coupling of partitions[J].Power System Technology,2020,44(1):223-230.
    [9] 李英量,王康,王德明,等.考虑弱耦合关系的全维灵敏度矩阵快速VCA方法[J].电测与仪表,2022,59(1):69-76. LI Yingliang,WANG Kang,WANG Deming,et al.A fast VCA method of full-dimensional sensitivity matrix considering weak coupling relationship[J].Electrical Measurement & Instrumentation,2022,59(1):69-76.
    [10] 鲍海,房国俊.一种采用等效传输阻抗法的新型电气距离计算方法及其应用[J].电网技术,2019,43(1):244-250. BAO Hai,FANG Guojun.A new method of electrical distance calculation and its applications used the equivalent transmission impedance method[J].Power System Technology,2019,43(1):244-250.
    [11] 李鹏,王加浩,徐贤,等.面向新型电力系统潮流频繁波动的无功鲁棒分区方法[J].电力系统自动化,2022,46(11):102-110. LI Peng,WANG Jiahao,XU Xian,et al.Robust reactive power partitioning method for frequent power flow fluctuation in new power system[J].Automation of Electric Power Systems,2022,46(11):102-110.
    [12] 张倩,丁津津,张道农,等.基于集群划分的高渗透率分布式系统无功优化[J].电力系统自动化,2019,43(3):130-137. ZHANG Qian,DING Jinjin,ZHANG Daonong,et al.Reactive power optimization of high-penetration distributed generation system based on clusters partition[J].Automation of Electric Power Systems,2019,43(3):130-137.
    [13] 张晓英,侯秉臣,王琨,等.基于改进天牛须算法的含固态变压器的配电网无功优化[J].高压电器,2022,58(11):221-229. ZHANG Xiaoying,HOU Bingchen,WANG Kun,et al.Reactive power optimization of distribution network with solid state transformer based on improved beetle antennae search algorithm[J].High Voltage Apparatus,2022,58(11):221-229.
    [14] 彭泽森,舒恺,高飞翎,等.基于改进蜉蝣算法的一种新型无功优化补偿方法及其应用[J].智慧电力,2022,50(12):41-47. PENG Zesen,SHU Kai,GAO Feiling,et al.A novel modified mayfly algorithm-based reactive power optimization compensation method and its application[J].Smart Power,2022,50(12):41-47.
    [15] 张旭,陈云龙,王仪贤,等.基于潮流断面修正的含风电电网无功-电压分区方法[J].电力自动化设备,2019,39(10):48-54. ZHANG Xu,CHEN Yunlong,WANG Yixian,et al.Reactive power-voltage partitioning of power grid with wind power based on correction of power flow section[J].Electric Power Automation Equipment,2019,39(10):48-54.
    [16] 张赟宁,石泽.基于快速搜索与发现密度峰值聚类算法的含有分布式光伏的配电网电压分区协调控制[J].现代电力,2020,37(1):35-41. ZHANG Yunning,SHI Ze.Voltage partition coordinated control of distribution network with distributed photovoltaic based on CFSFDP algorithm[J].Modern Electric Power,2020,37(1):35-41.
    [17] 何仰赞,温增银著.电力系统分析[M].3版.武汉:华中科技大学出版社,2002:62-65. HE Yangzan,WEN Zengyin.Electric power system analysis[M].3rd edition.Wuhan:Huazhong University of Science and Technology Press,2002:62-65.
    [18] 邵瑶,汤涌.一种快速评估多馈入直流系统换相失败风险的方法[J].中国电机工程学报,2017,37(12):3429-3436+3670. SHAO Yao,TANG Yong.A fast assessment method for evaluating commutation failure risk of multi-infeed HVDC systems[J].Proceedings of the CSEE,2017,37(12):3429-3436+3670.
    [19] PAI M A.Energy function analysis for power system stability[M].Boston,Springer US,1989:27-36.
    [20] 马喜平,何世恩,姚寅,等.计及风速不确定性及相关性的风电场分区虚拟惯量估计[J].电力系统保护与控制,2022,50(10):123-131. MA Xiping,HE Shien,YAO Yin,et al.Virtual inertia estimation of wind farm zones with wind speed uncertainty and correlation[J].Power System Protection and Control,2022,50(10):123-131.
    [21] ROGERS G.Power system oscillations[M].Boston:Springer US,2000:85-92.
    [22] MAO X M,ZHU W F,WU L,et al.Optimal allocation of dynamic VAR sources using zoning-based distributed optimization algorithm[J].International Journal of Electrical Power & Energy Systems,2019,113:952-962.
    [23] 刘扬,徐潇源,马洪艳,等.基于谱聚类与功率传输分布因子的电网静态等值[J].现代电力,2018,35(3):24-31. LIU Yang,XU Xiaoyuan,MA Hongyan,et al.Power system static equivalence based on spectral clustering and power transfer distribution factors[J].Modern Electric Power,2018,35(3):24-31.
    相似文献
    引证文献
引用本文

秦津宇,毛晓明,董 哲,等.一种实用的基于网络拓扑计算电气距离的方法[J].电力科学与技术学报,2024,39(5):77-82,101.
QIN Jinyu, MAO Xiaoming, DONG Zhe, et al. A practical method for calculating electrical distance based on network topology[J]. Journal of Electric Power Science and Technology,2024,39(5):77-82,101.

复制
分享
文章指标
  • 点击次数:139
  • 下载次数: 268
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2024-12-02
文章二维码