基于改进WCVaR的电力系统低碳经济调度
作者:
作者单位:

(1. 国网福建省电力有限公司经济技术研究院,福建 福州 350003;2.国网福建电力有限公司,福建 福州 350003;3.国网福建省电力有限公司电力科学研究院,福建 福州 350003;)

通讯作者:

沈 豫(1985—),女,博士,高级工程师,主要从事电网规划、能源经济等方面的研究;E?mail:shenyu_edu@qq.com

中图分类号:

TM73

基金项目:

国网福建省电力有限公司研究专项(B3130023000D)


Low‑carbon economic dispatching of power systems based on fuzzy WCVaR
Author:
Affiliation:

(1.Economic and Technological Research Institute, State Grid Fujian Electric Power Co.,Ltd., Fuzhou 350003, China; 2.State Grid Fujian Electric Power Co.,Ltd., Fuzhou 350003, China; 3.Electric Power Research Institute, State Grid Fujian Electric Power Co.,Ltd., Fuzhou 350003, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    高比例新能源并网的新型电力系统是实现“双碳”目标的枢纽平台,但新能源出力的不确定性势必会给电力系统带来调峰困难、灵活性不足等诸多问题。为有效平衡系统的经济性与安全性,首先,引入改进最差条件风险价值(worst case conditional value at risk, WCVaR)来评估新能源出力不确定性给电力系统带来的风险;其次,引入价格型需求响应并对火电机组进行低碳灵活性改造,提高新能源消纳水平,同时缓解火电机组深度调峰带来的过度碳排放问题;再次,建立以系统总运行成本与运行风险值综合最优为目标函数的电力系统低碳经济优化调度模型;最后,基于实际算例验证了该模型的有效性。

    Abstract:

    The new power system with a high proportion of renewable energy grid integration serves as a pivotal platform for achieving the "dual carbon" goals. However, the uncertainty in renewable energy output inevitably poses challenges such as difficulty in peak load regulation and insufficient flexibility to the power system. To effectively balance the economy and security of the system, several measures are taken. Firstly, the improved worst case conditional value at risk (WCVaR) is introduced to assess the risks posed by the uncertainty of renewable energy output to the power system. Secondly, price-based demand response and low-carbon flexibility retrofits for thermal power units are introduced to enhance the level of renewable energy absorption while mitigating excessive carbon emissions caused by deep peak load regulation of thermal power units. Thirdly, a low-carbon economic optimization scheduling model for the power system is established, with the objective function of minimizing the total system operation cost and operation risk value. Finally, the effectiveness of the model is verified through practical examples.

    参考文献
    [1] 舒印彪,赵勇,赵良,等.“双碳” 目标下我国能源电力低碳转型路径[J].中国电机工程学报,2023,43(5):1663-1672. SHU Yinbiao,ZHAO Yong,ZHAO Liang,et al.Study on low carbon energy transition path toward carbon peak and carbon neutrality[J].Proceedings of the CSEE,2023,43(5):1663-1672.
    [2] 李明节,陈国平,董存,等.新能源电力系统电力电量平衡问题研究[J].电网技术,2019,43(11):3979-3986. LI Mingjie,CHEN Guoping,DONG Cun,et al.Research on power balance of high proportion renewable energy system[J].Power System Technology,2019,43(11):3979-3986.
    [3] 杨寅平,曾沅,秦超,等.面向深度调峰的火电机组灵活性改造规划模型[J].电力系统自动化,2021,45(17):79-88. YANG Yinping,ZENG Yuan,QIN Chao,et al.Planning model for flexibility reformation of thermal power units for deep peak regulation[J].Automation of Electric Power Systems,2021,45(17):79-88.
    [4] 王磊,牛耘依,孟娜,等.考虑调峰与储能特性的抽蓄电站服务电网综合评价[J].电网与清洁能源,2022,38(5):135-142. WANG Lei,NIU Yunyi,MENG Na,et al.Comprehensive evaluation of pumped storage power plant serving grid considering peak regulation and energy storage[J].Power System and Clean Energy,2022,38(5):135-142.
    [5] 应益强,王正风,吴旭,等.计及新能源随机特性的电网深度调峰多目标策略[J].电力系统保护与控制,2020,48(6):34-42. YING Yiqiang,WANG Zhengfeng,WU Xu,et al.Multi-objective strategy for deep peak shaving of power grid considering uncertainty of new energy[J].Power System Protection and Control,2020,48(6):34-42.
    [6] 王淑云,娄素华,吴耀武,等.计及火电机组深度调峰成本的大规模风电并网鲁棒优化调度[J].电力系统自动化,2020,44(1):118-125. WANG Shuyun,LOU Suhua,WU Yaowu,et al.Robust optimal dispatch of large-scale wind power integration considering deep peak regulation cost of thermal power units[J].Automation of Electric Power Systems,2020,44(1):118-125.
    [7] 邓婷婷,娄素华,田旭,等.计及需求响应与火电深度调峰的含风电系统优化调度[J].电力系统自动化,2019,43(15):34-41. DENG Tingting,LOU Suhua,TIAN Xu,et al.Optimal dispatch of power system integrated with wind power considering demand response and deep peak regulation of thermal power units[J].Automation of Electric Power Systems,2019,43(15):34-41.
    [8] 杨修宇,刘雪媛,郭琪,等.考虑辅助服务收益的储能与火电机组灵活性改造协调规划方法[J].电网技术,2023,47(4):1350-1362. YANG Xiuyu,LIU Xueyuan,GUO Qi,et al.Coordinated planning of energy storage and flexible retrofit of thermal power units considering ancillary service income[J].Power System Technology,2023,47(4):1350-1362.
    [9] 杨龙杰,周念成,胡博,等.计及火电阶梯式爬坡率的耦合系统优化调度方法[J].中国电机工程学报,2022,42(1):153-164. YANG Longjie,ZHOU Niancheng,HU Bo,et al.Optimal scheduling method for coupled system based on ladder-type ramp rate of thermal power units[J].Proceedings of the CSEE,2022,42(1):153-164.
    [10] 李晅,马瑞,曾婷,等.含风电与碳捕集电厂的电力系统多目标动态最优潮流[J].电力科学与技术学报,2018,33(1):30-37. LI Xuan,MA Rui,ZENG Ting,et al.Multi-objective dynamic optimal power flow for power system considering wind farm and carbon capture power plant[J].Journal of Electric Power Science and Technology,2018,33(1):30-37.
    [11] 李红伟,吴佳航,王佳怡,等.计及P2G及碳捕集的风光氢储综合能源系统低碳经济调度[J].电力系统保护与控制,2024,52(16):26-36. LI Hongwei,WU Jiahang,WANG Jiayi,et al.Low-carbon economic dispatch of a wind,solar,and hydrogen storage integrated energy system considering P2G and carbon capture[J].Power System Protection and Control,2024,52(16):26-36.
    [12] 骆钊,罗蒙顺,沈鑫,等.基于碳捕集-电转气的矿区综合能源系统协同优化调度[J].电力系统自动化,2024,48(3):22-30. LUO Zhao,LUO Mengshun,SHEN Xin,et al.Collaborative optimal scheduling of coal mine integrated energy system based on carbon capture and power to gas[J].Automation of Electric Power Systems,2024,48(3):22-30.
    [13] 崔杨,张聪,张璐,等.基于风电-碳捕集电力系统的灵活性调峰策略[J].电力自动化设备,2023,43(6):10-17+45. CUI Yang,ZHANG Cong,ZHANG Lu,et al.Flexible peak shaving strategy of power system based on wind power-carbon capture[J].Electric Power Automation Equipment,2023,43(6):10-17+45.
    [14] 张杰,陈洁,孙晗喆,等.基于碳捕集与液态CO2储能的综合能源系统优化调度[J].智慧电力,2023,51(3):1-8. ZHANG Jie,CHEN Jie,SUN Hanzhe,et al.Optimal scheduling of integrated energy systems based on carbon capture and liquid CO2 energy storage[J].Smart Power,2023,51(3):1-8.
    [15] 李贻涛,李可,邢晓敏,等.考虑富氧燃烧技术的综合能源系统优化调度[J].电网与清洁能源,2024,40(8):1-10+17. LI Yitao,LI Ke,XING Xiaomin,et al.Optimal scheduling of the integrated energy system considering oxy-fuel combustion technology[J].Power System and Clean Energy,2024,40(8):1-10+17.
    [16] 黄文涛,罗杰,葛磊蛟,等.考虑灵活碳捕集电厂与抽水蓄能联合的广义经济调度策略[J].中国电机工程学报,2024,44(4):1430-1446. HUANG Wentao,LUO Jie,GE Leijiao,et al.Consider a generalized economic dispatch strategy combining flexible carbon capture power plants and pumped storage[J].Proceedings of the CSEE,2024,44(4):1430-1446.
    [17] REN X J,YANG N,YE B,et al.Stochastic planning model for incremental distributio network considering CVaR and wind power penetration[C]//2019 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia).Chengdu,China.IEEE,2019:1358-1363.
    [18] 赵璐,范黎,余赛尔,等.考虑电力系统运行风险的火电灵活性改造规划[J].武汉大学学报(工学版),2024,57(5):637-645. ZHAO Lu,FAN Li,YU Saier,et al.Thermal power flexibility retrofit planning considering the operational risk of the power system[J].Engineering Journal of Wuhan University,2024,57(5):637-645.
    [19] ZHANG C,XU Y,DONG Z Y,et al.Robust coordination of distributed generation and price-based demand response in microgrids[J].IEEE Transactions on Smart Grid,2018,9(5):4236-4247.
    [20] 张虹,马鸿君,闫贺,等.计及WCVaR评估的微电网供需协同两阶段日前优化调度[J].电力系统自动化,2021,45(2):55-63. ZHANG Hong,MA Hongjun,YAN He,et al.Two-stage day-ahead optimal microgrid scheduling with coordination between supply and demand considering WCVaR assessment[J].Automation of Electric Power Systems,2021,45(2):55-63.
    [21] JI L,HUANG G H,XIE Y L,et al.Robust cost-risk tradeoff for day-ahead schedule optimization in residential microgrid system under worst-case conditional value-at-risk consideration[J].Energy,2018,153:324-337.
    [22] 朱健宇,潘学萍,王正风,等.兼顾碳减排和新能源消纳的火电机组深度调峰与复合储能协调规划[J].电力自动化设备,2024,44(1):17-23. ZHU Jianyu,PAN Xueping,WANG Zhengfeng,et al.Coordinated planning of thermal generator deep peak regulation and composite energy storage considering carbon emission reduction and new energy consumption[J].Electric Power Automation Equipment,2024,44(1):17-23.
    [23] 崔杨,邓贵波,曾鹏,等.计及碳捕集电厂低碳特性的含风电电力系统源–荷多时间尺度调度方法[J].中国电机工程学报,2022,42(16):5869-5886+6163. CUI Yang,DENG Guibo,ZENG Peng,et al.Multi-time scale source-load dispatch method of power system with wind power considering low-carbon characteristics of carbon capture power plant[J].Proceedings of the CSEE,2022,42(16):5869-5886+6163.
    [24] AKBARI-DIBAVAR A,MOHAMMADI-IVATLOO B,ZARE K,et al.Economic-emission dispatch problem in power systems with carbon capture power plants[J].IEEE Transactions on Industry Applications,2021,57(4):3341-3351.
    [25] HAN D,HUANG W,REN H Y,et al.Machine learning analytics for virtual bidding in the electricity market[J].International Journal of Electrical Power & Energy Systems,2022,143:108489.
    [26] 汤旸,刘翊枫,王静,等.电力市场售电公司最优购售电量决策模型及其应用[J].电力科学与技术学报,2022,37(4):3-12. TANG Yang,LIU Yifeng,WANG Jing,et al.Optimal decision model and application of electricity purchasing and selling ofelectricity retailer in electricity market[J].Journal of Electric Power Science and Technology,2022,37(4):3-12.
    [27] 马鸿君.考虑最差条件风险价值的微电网优化调度研究[D].吉林:东北电力大学,2021. MA Hongjun.Research on optimal dispatching of microgrid considering the risk value of worst conditions[D].Jilin:Northeast Dianli University,2021.
    [28] 宫鸿林.基于阶梯型模糊-WCVaR优化的电热综合能源系统优化调度[D].秦皇岛:燕山大学,2022. GONG Honglin.Optimal scheduling of electrothermal integrated energy system based on step fuzzy-WCVaR optimization[D].Qinhuangdao:Yanshan University,2022.
    [29] 向思阳,蔡泽祥,刘平,等.基于AHP-反熵权法的配电网低碳运行模糊综合评价[J].电力科学与技术学报,2019,34(4):69-76. XIANG Siyang,CAI Zexiang,LIU Ping,et al.Fuzzy comprehensive evaluation of the low-carbon operation of distribution network based on AHP-anti-entropy method[J].Journal of Electric Power Science and Technology,2019,34(4):69-76.
    [30] CHEN J S,LIU L J,XU H W,et al.Joint source-load optimal scheduling considering demand response and flexible supply-demand balance[C]//2022 4th International Conference on Electrical Engineering and Control Technologies (CEECT).Shanghai,China.IEEE,2022:486-493.
    相似文献
    引证文献
引用本文

沈 豫,韩钟宽,曾振松,等.基于改进WCVaR的电力系统低碳经济调度[J].电力科学与技术学报,2024,39(5):102-111,128.
SHEN Yu, HAN Zhongkuan, ZENG Zhensong, et al. Low‑carbon economic dispatching of power systems based on fuzzy WCVaR[J]. Journal of Electric Power Science and Technology,2024,39(5):102-111,128.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2024-12-02
文章二维码