非介入式工业设备监测方法研究
作者:
作者单位:

(国网天津市电力公司,天津 300100)

作者简介:

通讯作者:

赵学明(1994—),男,硕士,助理工程师,主要从事市场拓展方面的研究;E?mail: 18722584846@126.com

中图分类号:

TM615

基金项目:

国网天津市电力公司科技项目(KJ21?2?10)


Research on non‑invasive industrial equipment monitoring methods
Author:
Affiliation:

(State Grid Tianjin Electric Power Company, Tianjin 300100, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    非介入式负荷监测(non?invasive load monitoring, NILM)技术可以不侵入用户内部,仅通过对用户电表数据的分析就能获取用户各个用电设备的用电信息。NILM在居民负荷分解中的研究和应用很多,但在工业负荷上的应用却很少。一方面,工业负荷在负荷特性和负荷数据分布方面与民用负荷差别较大,致使许多应用于居民场景中的方法在迁移至工业场景后性能下降明显;另一方面,工业用户出于对保护隐私的考虑不会公开用电数据,利用有限的数据有效学习工业负荷设备知识是极具挑战性的。为应对这些问题,提出一种基于因子隐马尔科夫模型(factorial hidden Markov model,FHMM)的工业负荷分解方法。该方法利用FHMM的多条独立的隐状态链模拟工业负荷设备的运行状态转换过程,求解设备在各时刻所处的状态,即可结合状态能耗信息预测设备用电量。最后利用某工厂的现场能耗监测数据对所提方法进行测试,结果表明所提方法具有良好的负荷分解效果。

    Abstract:

    Non-invasive load monitoring (NILM) technology can obtain the electricity consumption information of various electrical devices of users without intruding into their premises, solely through the analysis of data from their electricity meters. NILM has been extensively researched and applied in residential load disaggregation, but its application in industrial loads is limited. On one hand, industrial loads differ significantly from residential loads in terms of load characteristics and data distribution, leading to a noticeable performance decline when methods designed for residential scenarios are applied to industrial settings. On the other hand, industrial users, concerned about privacy protection, are reluctant to disclose their electricity consumption data, making it highly challenging to effectively learn about industrial load equipment using limited data. To address these issues, an industrial load disaggregation method based on the factorial hidden Markov model (FHMM) is proposed. This method utilizes multiple independent hidden state chains of the FHMM to simulate the operational state transition process of industrial load equipment. By determining the state of the equipment at each moment, the electricity consumption of the equipment can be predicted in conjunction with state-specific energy consumption information. Finally, the proposed method is tested using on-site energy consumption monitoring data from a factory, and the results demonstrate its effective load disaggregation performance.

    参考文献
    相似文献
    引证文献
引用本文

赵学明,杨国朝,杨朝雯,等.非介入式工业设备监测方法研究[J].电力科学与技术学报,2024,39(5):112-117.
ZHAO Xueming, YANG Guozhao, YANG Zhaowen, et al. Research on non‑invasive industrial equipment monitoring methods[J]. Journal of Electric Power Science and Technology,2024,39(5):112-117.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-02
  • 出版日期:
文章二维码