非介入式工业设备监测方法研究
作者:
作者单位:

(国网天津市电力公司,天津 300100)

通讯作者:

赵学明(1994—),男,硕士,助理工程师,主要从事市场拓展方面的研究;E?mail: 18722584846@126.com

中图分类号:

TM615

基金项目:

国网天津市电力公司科技项目(KJ21?2?10)


Research on non‑invasive industrial equipment monitoring methods
Author:
Affiliation:

(State Grid Tianjin Electric Power Company, Tianjin 300100, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • | | | |
  • 文章评论
    摘要:

    非介入式负荷监测(non?invasive load monitoring, NILM)技术可以不侵入用户内部,仅通过对用户电表数据的分析就能获取用户各个用电设备的用电信息。NILM在居民负荷分解中的研究和应用很多,但在工业负荷上的应用却很少。一方面,工业负荷在负荷特性和负荷数据分布方面与民用负荷差别较大,致使许多应用于居民场景中的方法在迁移至工业场景后性能下降明显;另一方面,工业用户出于对保护隐私的考虑不会公开用电数据,利用有限的数据有效学习工业负荷设备知识是极具挑战性的。为应对这些问题,提出一种基于因子隐马尔科夫模型(factorial hidden Markov model,FHMM)的工业负荷分解方法。该方法利用FHMM的多条独立的隐状态链模拟工业负荷设备的运行状态转换过程,求解设备在各时刻所处的状态,即可结合状态能耗信息预测设备用电量。最后利用某工厂的现场能耗监测数据对所提方法进行测试,结果表明所提方法具有良好的负荷分解效果。

    Abstract:

    Non-invasive load monitoring (NILM) technology can obtain the electricity consumption information of various electrical devices of users without intruding into their premises, solely through the analysis of data from their electricity meters. NILM has been extensively researched and applied in residential load disaggregation, but its application in industrial loads is limited. On one hand, industrial loads differ significantly from residential loads in terms of load characteristics and data distribution, leading to a noticeable performance decline when methods designed for residential scenarios are applied to industrial settings. On the other hand, industrial users, concerned about privacy protection, are reluctant to disclose their electricity consumption data, making it highly challenging to effectively learn about industrial load equipment using limited data. To address these issues, an industrial load disaggregation method based on the factorial hidden Markov model (FHMM) is proposed. This method utilizes multiple independent hidden state chains of the FHMM to simulate the operational state transition process of industrial load equipment. By determining the state of the equipment at each moment, the electricity consumption of the equipment can be predicted in conjunction with state-specific energy consumption information. Finally, the proposed method is tested using on-site energy consumption monitoring data from a factory, and the results demonstrate its effective load disaggregation performance.

    参考文献
    [1] ARMEL K C,GUPTA A,SHRIMALI G,et al.Is disaggregation the holy grail of energy efficiency? The case of electricity[J].Energy policy,2013,52:213-234.
    [2] 金梦,朱鑫要,周前.新能源对电网调峰特性影响定量评估及应用[J].高压电器,2023,59(4):70-76. JIN Meng,ZHU Xinyao,ZHOU Qian.Quantitative assessment of influence of renewable energy on peak regulation characteristics of power grid and its application[J].High Voltage Apparatus,2023,59(4):70-76.
    [3] 谭青博,潘伟,王竹宁,等.新型电力系统下综合能源系统的投资决策模型[J].智慧电力,2023,51(8):46-52. TAN Qingbo,PAN Wei,WANG Zhuning,et al.Investment decision model for comprehensive energy system under new power system[J].Smart Power,2023,51(8):46-52.
    [4] 鲍海波,杨舒惠,陈子民,等.事件检测类非侵入式负荷监测算法综述[J].电力系统自动化,2023,47(13):94-109. BAO Haibo,YANG Shuhui,CHEN Zimin,et al.Review on event-inspection based non-intrusive load monitoring algorithms[J].Automation of Electric Power Systems,2023,47(13):94-109.
    [5] 宋玮琼,王立永,宋威,等.基于设备运行状态检测与能量回归同步评估的居民非介入式负荷辨识算法研究[J].电测与仪表,2023,60(12):182-188+195. SONG Weiqiong,WANG Liyong,SONG Wei,et al.Research on residential non-intrusive load identification algorithm based on equipment operation state detection and energy regression synchronous evaluation[J].Electrical Measurement & Instrumentation,2023,60(12):182-188+195.
    [6] LIU B,LUAN W,YU Y.Dynamic time warping based non-intrusive load transient identification[J].Applied Energy,2017,195:634-645.
    [7] 杨秀,李安,孙改平,等.基于改进GMM-CNN-GRU混合的非侵入式负荷监测方法研究[J].电力系统保护与控制,2022,50(14):65-75. YANG Xiu,LI An,SUN Gaiping,et al.Non-invasive load monitoring based on an improved GMM-CNN-GRU combination[J].Power System Protection and Control,2022,50(14):65-75.
    [8] 罗卿.非侵入式家用负荷监测算法研究[D].长沙:湖南大学,2021. LUO Qing.The research on non-invasive household load monitoring algorithm[D].Changsha:Hunan University,2021.
    [9] 苏欣,袁葆,张瑞,等.基于非侵入式负荷识别的交流电压幅值测量[J].电网与清洁能源,2022,38(12):101-106. SU Xin,YUAN Bao,ZHANG Rui,et al.AC voltage amplitude measurement based on non-intrusive load identification[J].Power System and Clean Energy,2022,38(12):101-106.
    [10] 余贻鑫,刘博,栾文鹏.非侵入式居民电力负荷监测与分解技术[J].南方电网技术,2013,7(4):1-5. YU Yixin,LIU Bo,LUAN Wenpeng.Nonintrusive residential load monitoring and decomposition technology[J].Southern Power System Technology,2013,7(4):1-5.
    [11] DING S,HPEL K W,DANG Y.Forecasting China's electricity consumption using a new grey prediction model[J].Energy,2018,149:314-328.
    [12] TRUNG K N,ZAMMIT O,DEKNEUVAL E,et al.An innovative non-intrusive load monitoring system for commercial and industrial application[C]//5th International Conference on Advanced Technologies for Communications,Hanoi,Vietnam,2012.
    [13] BRUCKE K,ARENS S,TELLE J S,et al.Particle swarm optimization for energy disaggregation in industrial and commercial buildings[EB/OL].https://arxiv.org/abs/2006.12940v1,2020-06-23.
    [14] SUZUKI R,KOHMOTO S,OGATSU T.Non-intrusive condition monitoring for manufacturing systems[C]//25th European Signal Processing Conference (EUSIPCO),Kos,Greece,2017.
    [15] MARTINS P B M,GOMES J G R C,NASCIMENTO V B,et al.Application of a deep learning generative model to load disaggregation for industrial machinery power consumption monitoring[C]//IEEE International Conference on Communications,Control,and Computing Technologies for Smart Grids (SmartGridComm),Aalborg,Denmark,2018.
    [16] GHAHRAMANI Z,JORDAN M I.Factorial hidden Markov models[J].Machine learning,1997,29(2):245-273.
    [17] ZEIFMAN M,ROTH K.Nonintrusive appliance load monitoring:review and outlook[J].IEEE transactions on Consumer Electronics,2011,57(1):76-84.
    [18] FORNEY G D.The viterbi algorithm[J].Proceedings of the IEEE,1973,61(3):268-278.
    [19] KOLTER J Z,JOHNSON M J.REDD:a public data set for energy disaggregation research[C]//The SustKDD workshop on Data Mining Applications in Sustainability,San Diego,CA,USA,2011.
    [20] KAHL M,HAQ A U,KRIECHBAUMER T,et al.Whited-a worldwide household and industry transient energy data set[C]//The 3rd International Workshop on Non-Intrusive Load Monitoring,?Vancouver,Canada,2016.
    [21] ANDERSON K,OCNEANU A,BENITEZ D,et al.BLUED:a fully labeled public dataset for event-based non-intrusive load monitoring research[C]//The ACM workshop on data mining applications in sustainability,Beijing,China,2012.
    [22] MONACCHI A,EGARTER D,ELMENREICH W,et al.GREEND:an energy consumption dataset of households in Italy and Austria[C]//IEEE International Conference on Smart Grid Communications (SmartGridComm),Venice,?Italy,2014.
    [23] KELLY J,KNOTTENBELT W.The UK-DALE dataset,domestic appliance-level electricity demand and whole-house demand from five UK homes[J].Scientific data,2015,2(1):1-14.
    [24] GULATI M,RAM S S,SINGH A.An in depth study into using EMI signatures for appliance identification[C]//The 1st ACM Conference on Embedded Systems for Energy-efficient Buildings,Memphis,TN,United States,2014.
    [25] BATRA N,GULATI M,SINGH A,et al.It's different:insights into home energy consumption in India[C]//5th ACM Workshop on Embedded Systems For Energy-Efficient Buildings,Rome,Italy,2013.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵学明,杨国朝,杨朝雯,等.非介入式工业设备监测方法研究[J].电力科学与技术学报,2024,39(5):112-117.
ZHAO Xueming, YANG Guozhao, YANG Zhaowen, et al. Research on non‑invasive industrial equipment monitoring methods[J]. Journal of Electric Power Science and Technology,2024,39(5):112-117.

复制
分享
文章指标
  • 点击次数:81
  • 下载次数: 195
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2024-12-02
文章二维码