基于PCA‑VMD‑MVO‑SVM的短期光伏输出功率预测方法
作者:
作者单位:

(1.长沙理工大学电气与信息工程学院,湖南 长沙 410114;2.电网防灾减灾全国重点实验室,湖南 长沙 410114;3.国网湖南省电力公司永州供电公司,湖南 永州 425000;4.湖南红太阳新能源科技有限公司,湖南 长沙 410111)

作者简介:

通讯作者:

赵 斌(1968—),男,博士,教授,博士生导师,主要从事新能源科学技术及应用等方面的研究;E?mail:zhaobin19680507@163.com

中图分类号:

TM615

基金项目:

国家自然科学基金(52107071);湖南省自然科学基金(2023JJ30048);湖南省教育厅科学研究重点项目(22A0217);长沙理工大学学术学位研究生项目(CSLGCX23155)


Prediction method of short‑term PV output power based on PCA‑VMD‑MVO‑SVM
Author:
Affiliation:

(1.College of Electrical and Information Engineering, Changsha University of Science & Technology, Changsha 410114, China; 2.State Key Laboratory of Disaster Prevention and Reduction for Power Grid, Changsha 410114, China; 3.Yongzhou Power Supply Company, State Grid Hunan Electric Power Co., Ltd., Yongzhou 425000, China; 4.Hunan Red Solar New Energy Science and Technology Co., Ltd., Changsha 410111, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高光伏输出功率短期预测的准确性和可靠性,提出一种基于主成分分析法(principal component analysis, PCA)、变分模态分解法(variational mode decomposition, VMD)和多元宇宙算法(multi verse optimizer, MVO)对支持向量机(support vector machine, SVM)进行优化的光伏输出功率短期预测组合模型。先利用PCA具有的数据分析能力和VMD具有的数据分解性能,对多维训练数据进行降维和分解;再将提取后的数据输入由MVO算法优化的SVM预测模型,得到不同本征模态的光伏输出功率预测分量;最后,将各预测分量的结果进行叠加。研究结果表明:该模型在晴天、多云和阴雨天时的平均绝对百分比误差分别为0.745 3%、0.510 5%和1.015?6%。以多云天气为例,该模型的平均绝对百分比误差比MVO?SVM、VMD?MVO?SVM、PCA?MVO?SVM模型的分别降低了3.820 7%、2.917 3%和1.843 8%。

    Abstract:

    To enhance the accuracy and reliability of short-term photovoltaic (PV) output power forecasting, a hybrid model is proposed, which integrates principal component analysis (PCA), variational mode decomposition (VMD), and multi-verse optimizer (MVO) to optimize a support vector machine (SVM) for PV output power prediction. Initially, PCA's data analysis capabilities and VMD's data decomposition performance are leveraged to reduce the dimensionality and decompose the multidimensional training data. Subsequently, the extracted dataset is fed into an SVM prediction model optimized by the MVO algorithm to obtain PV output power forecast components for different intrinsic modes. Finally, the results of these forecast components are aggregated. The research findings indicate that the proposed model achieves mean absolute percentage errors (MAPEs) of 0.7453%, 0.5105%, and 1.0156% for sunny, partly cloudy, and rainy days, respectively. Taking partly cloudy weather as an example, the MAPE of the proposed model is reduced by 3.8207%, 2.9173%, and 1.8438% compared to the MVO-SVM, VMD-MVO-SVM, and PCA-MVO-SVM models, respectively.

    参考文献
    相似文献
    引证文献
引用本文

邹 港,赵 斌,罗 强,等.基于PCA‑VMD‑MVO‑SVM的短期光伏输出功率预测方法[J].电力科学与技术学报,2024,39(5):163-171.
ZOU Gang, ZHAO Bin, LUO Qiang, et al. Prediction method of short‑term PV output power based on PCA‑VMD‑MVO‑SVM[J]. Journal of Electric Power Science and Technology,2024,39(5):163-171.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-02
  • 出版日期:
文章二维码