基于GOA‑SVM的光伏阵列故障诊断方法研究
作者:
作者单位:

(1.国网湖南省电力有限公司供电服务中心,湖南 长沙 410004;2.智能电气量测与应用技术湖南省重点实验室,湖南 长沙 410004;3.国网湖南省电力有限公司,湖南 长沙 410004;4.湖南大学电气与信息工程学院,湖南 长沙 410082)

作者简介:

通讯作者:

高云鹏(1978—),男,博士,教授,主要电力设备故障诊断、智能信息处理等方面的研究;E?mail:gaoyp@hnu.edu.cn

中图分类号:

TM615

基金项目:

国家重点研发计划(2021YFF0602402)


Research on fault diagnosis method for photovoltaic array based on GOA-SVM
Author:
Affiliation:

(1. Power Supply Service Center, State Grid Hunan Electric Power Co., Ltd., Changsha 410004, China;2. Hunan Province Key Laboratory of Intelligent Electrical Measurement and Application Technology, Changsha 410004, China;3. State Grid Hunan Electric Power Co., Ltd., Changsha 410004, China;4. College of Electrical and Information Engineering, Hunan University, Changsha 410082, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    光伏阵列输出功率随机性、波动性强。如果其发生故障,将严重影响电力系统安全与稳定。针对当前光伏故障诊断的准确率低和收敛速度慢的难题,提出一种基于蝗虫算法-支持向量机(grasshopper optimization algorithm?support vector machine,GOA?SVM)模型的光伏阵列故障诊断方法。首先,建立光伏阵列等效电路模型,分析光伏阵列的伏安曲线变化特性;其次,考虑环境影响因素和光伏阵列规模非线性变化,提取反映不同故障特性的特征量,将数据映射到高维空间进行非线性处理;最后,提出蝗虫算法(grasshopper optimization algorithm,GOA)优化非线性支持向量机改进方法,建立GOA?SVM光伏阵列故障诊断模型,并结合实例进行仿真。研究结果表明:该方法可应用于多种不同规模的光伏阵列模型,且均能实现对光伏阵列故障的有效诊断,其对4×3光伏阵列规模的数据仿真分类准确率可达99.808 8%。采用美国国家标准与技术研究院(National Institute of Standards and Technology,NIST)公开数据集进行验证,其故障诊断准确率达到92.368 2%。与其他方法相比,该方法的召回率及F1?Score均有明显提升。

    Abstract:

    The output power of photovoltaic (PV) arrays exhibits strong randomness and volatility. In the event of a fault, it can severely impact the safety and stable operation of the power system. Addressing the challenges of low accuracy and slow convergence in current PV fault diagnosis, this paper proposes a PV array fault diagnosis method based on the grasshopper optimization algorithm-support vector machine (GOA-SVM) model. Firstly, an equivalent circuit model of the PV array is established to analyze the variation characteristics of the PV array's voltage-current curve. Secondly, considering environmental factors and the nonlinear changes in the scale of the PV array, feature quantities reflecting different fault characteristics are extracted, and the data is mapped into a high-dimensional space for nonlinear processing. Finally, an improved method for optimizing the nonlinear support vector machine using GOA is proposed, and a GOA-SVM PV array fault diagnosis model is established, with simulations conducted using practical examples. The research results indicate that this method can be applied to various PV array models of different scales and effectively diagnose faults in PV arrays. For a 4×3 PV array scale, the data simulation classification accuracy can reach 99.8088%. When validated using the publicly available dataset from the national institute of standards and technology (NIST), the fault diagnosis accuracy achieves 92.3682%. Compared with other methods, this approach demonstrates significant improvements in recall rate and F1-Score.

    参考文献
    相似文献
    引证文献
引用本文

杨 帅,曾文伟,杨凌云,等.基于GOA‑SVM的光伏阵列故障诊断方法研究[J].电力科学与技术学报,2024,39(5):172-180.
YANG Shuai, ZENG Wenwei, YANG Lingyun, et al. Research on fault diagnosis method for photovoltaic array based on GOA-SVM[J]. Journal of Electric Power Science and Technology,2024,39(5):172-180.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-02
  • 出版日期:
文章二维码