多模态数据融合配电终端淹没风险快速预测方法
作者:
作者单位:

(1.广西电网有限责任公司电力科学研究院,南宁 广西 530023;2.广西电力装备智能控制与运维重点实验室,南宁 广西 530023;3.广西电网有限责任公司南宁供电局,南宁 广西 530029)

通讯作者:

王 乐(1986—),女,硕士,高级工程师,主要从事输变电设备防灾减灾研究;E?mail: happywle@163.com

中图分类号:

TM863

基金项目:

广西电网有限责任公司科技项目(GXKJXM20220107)


A rapid prediction method for flooding risk of distribution terminals based on multimodal data fusion
Author:
Affiliation:

(1.Electric Power Research Institute,Guangxi Power Gird Co., Ltd.,Nanning 530023,China;2.Guangxi Key Laboratory of Intelligent Control and Maintenance of Power Equipment,Nanning 530023,China;3.Nanning Power Supply Bureau,Guangxi Power Gird Co., Ltd., Nanning 530029,China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • | | | |
  • 文章评论
    摘要:

    受气候变化与城市布局影响,城市内涝日趋严重,威胁配电系统可靠供电。探索城市洪涝灾害预测模型,实现配电设备风险预测,可以降低洪涝灾害带来的影响。然而,现有基于水动力模型的方法计算复杂度过高,难以保证大范围淹没模拟预报的时效性,基于数据驱动模型方法的训练数据不足,难以满足快速精准城市内涝预警需求。为解决以上问题,提出基于多模态数据融合的降雨内涝快速预测模型。该方法通过水动力模型生成训练数据以解决训练数据量不足的问题,将高程地图等图像数据与降雨序列时序数据进行融合以提高预测精度,并以桂林市作为研究对象,验证所提方法的有效性。实验结果表明,所提方法在保持较高精度的同时,有较低的计算复杂度,可为配电终端风险评估提供参考。

    Abstract:

    Due to climate change and urban layout, urban waterlogging disasters are becoming increasingly severe, posing a serious threat to the stable power supply of the distribution system. In order to minimize the impact of flood disasters, it is urgent to explore urban flood disaster prediction models to achieve distribution equipment risk prediction. However, the existing hydrodynamic model-based method has high computational complexity and is difficult to guarantee the timeliness of large-scale flooding simulation forecast. The data-driven model-based method has insufficient training data, which is insufficient to meet the requirements of fast and accurate urban waterlogging warnings. To this end, a rapid waterlogging prediction model based on multimodal data fusion is proposes. This method generates training data through a hydrodynamic model to solve the problem of insufficient training data and integrates image data such as elevation maps with rainfall sequence time series data to improve prediction accuracy. Furthermore, Guilin City is used as the research object to verify the effectiveness of the proposed method. The experimental results show that the proposed method maintains high accuracy while reducing computational complexity. This method can provide a reference for risk assessment of distribution terminals.

    参考文献
    [1] IPCC.Climate change 2021:The physical science basis[R].2021.
    [2] BEARD L M,CARDELL J B,DOBSON I,et al.Key technical challenges for the electric power industry and climate change[J].IEEE Transactions on Energy Conversion,2010,25(2):465-473.
    [3] 王津宇,兰光宇,卢明,等.面向变电站防汛的熵权分配混杂风险评估[J].电力系统及其自动化学报,2023,35(7):74-82.WANG Jinyu,LAN Guangyu,LU Ming,et al.Hybrid risk assessment of entropy weight allocation for substation flood control[J].Proceedings of the CSU-EPSA,2023,35(7):74-82.
    [4] 夏军,王惠筠,甘瑶瑶,等.中国暴雨洪涝预报方法的研究进展[J].暴雨灾害,2019,38(5):416-421.XIA Jun,WANG Huiyun,GAN Yaoyao,et al.Research progress in forecasting methods of rainstorm and flood disaster in China[J].Torrential Rain and Disasters,2019,38(5):416-421.
    [5] 黄华兵,王先伟,柳林.城市暴雨内涝综述:特征、机理、数据与方法[J].地理科学进展,2021,40(6):1048-1059.HUANG Huabing,WANG Xianwei,LIU Lin.A review on urban pluvial floods:characteristics,mechanisms,data,and research methods[J].Progress in Geography,2021,40(6):1048-1059.
    [6] 胡传博,游兰,林珲.面向过程的城市公共安全风险监测评估建模方法[J].测绘学报,2018,47(8):1062-1071.HU Chuanbo,YOU Lan,LIN Hui.A process-oriented risk monitoring and assessment modeling approach in urban public safety[J].Acta Geodaetica et Cartographica Sinica,2018,47(8):1062-1071.
    [7] 陈慧忠,汪博炜,黄锋.基于FloodArea淹没模型的一次暴雨过程洪涝灾害模拟[J].广东气象,2019,41(1):40-42.CHEN Huizhong,WANG Bowei,HUANG Feng.Simulation of flood disaster in a rainstorm process based on FloodArea flooding model[J].Guangdong Meteorology,2019,41(1):40-42.
    [8] 于汪洋,江春波,刘健,等.水文水力学模型及其在洪水风险分析中的应用[J].水力发电学报,2019,38(8):87-97.YU Wangyang,JIANG Chunbo,LIU Jian,et al.Hydrologic-hydrodynamic model and its application in flood risk analysis[J].Journal of Hydroelectric Engineering,2019,38(8):87-97.
    [9] 王旭滢,王梦园.基于水动力模型与三维实景模型的城市“智” 水思路探究[J].智能城市,2021,7(3):44-45.WANG Xuying,WANG Mengyuan.Research on urban “smart” water thinking based on hydrodynamic model and three-dimensional real-life model[J].Intelligent City,2021,7(3):44-45.
    [10] 宋利祥,徐宗学.城市暴雨内涝水文水动力耦合模型研究进展[J].北京师范大学学报(自然科学版),2019,55(5):581-587.SONG Lixiang,XU Zongxue.Coupled hydrologic-hydrodynamic model for urban rainstorm water logging simulation:recent advances[J].Journal of Beijing Normal University (Natural Science),2019,55(5):581-587.
    [11] 胡伟贤,何文华,黄国如,等.城市雨洪模拟技术研究进展[J].水科学进展,2010,21(1):137-144.HU Weixian,HE Wenhua,HUANG Guoru,et al.Review of urban storm water simulation techniques[J].Advances in Water Science,2010,21(1):137-144.
    [12] NKWUNONWO U C,WHITWORTH M,BAILY B.A review of the current status of flood modelling for urban flood risk management in the developing countries[J].Scientific African,2020,7:e00269.
    [13] 邵月红,林炳章,叶金印,等.基于Elman动态神经网络的降雨?径流模拟研究[J].大气科学学报,2014,37(2):223-228.SHAO Yuehong,LIN Bingzhang,YE Jinyin,et al.Application of rainfall-runoff simulation based on Elman recurrent dynamic neural network model[J].Transactions of Atmospheric Sciences,2014,37(2):223-228.
    [14] HAMZIC A,AVDAGIC Z,OMANOVIC S.A sequential approach for short-term water level prediction using nonlinear autoregressive neural networks[C]//2016 XI International Symposium on Telecommunications (BIHTEL).Sarajevo,Bosnia and Herzegovina.IEEE,2016:1-7.
    [15] 邓红雷,周晨,夏桥,等.基于多维极值分布的风雨荷载下输电线路风偏放电概率分析[J].电力科学与技术学报,2021,36(2):67-75.DENG Honglei,ZHOU Chen,XIA Qiao,et al.Probability analysis of windage yaw discharge under wind and rain loads based on the multidimensional extreme value distribution[J].Journal of Electric Power Science and Technology,2021,36(2):67-75.
    [16] 张梦,赵靓芳,全星.PSO-ESN在城市内涝点降雨积水预测中的应用[J].中国农村水利水电,2019(6):56-59+65.ZHANG Meng,ZHAO Liangfang,QUAN Xing.Application of echo state network in the prediction of water level at urban waterlogging point[J].China Rural Water and Hydropower,2019(6):56-59+65.
    [17] 黄丹萍,白龙.南宁城市内涝分布特征及其监测预警系统应用分析[J].防灾科技学院学报,2019,21(4):84-89.HUANG Danping,BAI Long.Distribution characteristics of urban waterlogging in Nanning and application of its monitoring and early warning system[J].Journal of Institute of Disaster Prevention,2019,21(4):84-89.
    [18] 薛丰昌,宋肖依,唐步兴,等.视频监控的城市内涝监测预警[J].测绘科学,2018,43(8):50-55+61.XUE Fengchang,SONG Xiaoyi,TANG Buxing,et al.Urban waterlogging monitoring based on urban video image[J].Science of Surveying and Mapping,2018,43(8):50-55+61.
    [19] BERKHAHN S,FUCHS L,NEUWEILER I.An ensemble neural network model for real-time prediction of urban floods[J].Journal of Hydrology,2019,575:743-754.
    [20] 李海宏,吴吉东,王强,等.基于机器学习方法的上海市暴雨内涝灾情预测模型研究[J].自然灾害学报,2021,30(1):191-200.LI Haihong,WU Jidong,WANG Qiang,et al.A study on rainstorm waterlogging disaster prediction models in Shanghai based on machine learning[J].Journal of Natural Disasters,2021,30(1):191-200.
    [21] 白岗岗,侯精明,韩浩,等.基于深度学习的道路积水智能监测方法[J].水资源保护,2021,37(5):75-80.BAI Ganggang,HOU Jingming,HAN Hao,et al.Intelligent monitoring method for road inundation based on deep learning[J].Water Resources Protection,2021,37(5):75-80.
    [22] 李超然,肖飞,樊亚翔,等.一种基于LSTM-RNN的脉冲大倍率工况下锂离子电池仿真建模方法[J].中国电机工程学报,2020,40(9):3031-3042.LI Chaoran,XIAO Fei,FAN Yaxiang,et al.An approach to lithium-ion battery simulation modeling under pulsed high rate condition based on LSTM-RNN[J].Proceedings of the CSEE,2020,40(9):3031-3042.
    [23] 张志行,韩雪冰,冯旭宁,等.面向不同电流工况的锂离子电池改进EECM研究[J].电力工程技术,2023,42(4):2-12. ZHANG Zhihang,HAN Xuebing,FENG Xuning,et al.Improved EECM for lithium-ion batteries under different current conditions[J].Electric Power Engineering Technology,2023,42(4):2-12.
    [24] 欧阳红兵,黄亢,闫洪举.基于LSTM神经网络的金融时间序列预测[J].中国管理科学,2020,28(4):27-35.OUYANG Hongbing,HUANG Kang,YAN Hongju.Prediction of financial time series based on LSTM neural network[J].Chinese Journal of Management Science,2020,28(4):27-35.
    [25] 王礼敏,严倩,李寿山,等.基于双通道LSTM模型的用户性别分类方法研究[J].计算机科学,2018,45(2):121-124.WANG Limin,YAN Qian,LI Shoushan,et al.User gender classification with dual-channel LSTM[J].Computer Science,2018,45(2):121-124.
    [26] 刘婉婉,苏依拉,乌尼尔,等.基于LSTM的蒙汉机器翻译的研究[J].计算机工程与科学,2018,40(10):1890-1896.LIU Wanwan,SU Yila,WU Nier,et al.Mongolian-Chinese machine translation based on LSTM[J].Computer Engineering & Science,2018,40(10):1890-1896.
    [27] SZEGEDY C,LIU W,JIA Y Q,et al.Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Boston,MA,USA.IEEE,2015:1-9.
    [28] HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas,NV,USA.IEEE,2016:770-778.
    [29] BERNET D B,ZISCHG A P,PRASUHN V,et al.Modeling the extent of surface water floods in rural areas:lessons learned from the application of various uncalibrated models[J].Environmental Modelling & Software,2018,109:134-151.
    [30] 鄢仁武,林穿,宋微浪,等.基于EEMD和卷积神经网络的高压断路器故障诊断[J].高压电器,2022,58(4):213-220. YAN Renwu,LIN Chuan,SONG Weilang,et al.Research on circuit breaker fault diagnosis based on EEMD and convolutional neural network[J].High Voltage Apparatus,2022,58(4):213-220.
    [31] 薛丰昌,朱一晗,顾人颖,等.Floodarea模型的城市内涝可视化数值模拟[J].测绘科学,2020,45(8):181-187+198.XUE Fengchang,ZHU Yihan,GU Renying,et al.Visual numerical simulation of urban waterlogging based on Floodarea model[J].Science of Surveying and Mapping,2020,45(8):181-187+198.
    [32] 中华人民共和国住房和城乡建设部.35 kV~110 kV变电站设计规范:GB 50059—2011[S].北京:中国计划出版社,2012.Ministry of Housing and Urban-Rural Development of the People’s Republic of China.Code for design of 35 kV~110 kV substation:GB 50059—2011[S].Beijing:China Planning Press,2012.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王 乐,王 珂,覃桂锋,等.多模态数据融合配电终端淹没风险快速预测方法[J].电力科学与技术学报,2024,39(6):92-100.
WANG Le, WANG Ke, QIN Guifeng, et al. A rapid prediction method for flooding risk of distribution terminals based on multimodal data fusion[J]. Journal of Electric Power Science and Technology,2024,39(6):92-100.

复制
分享
文章指标
  • 点击次数:97
  • 下载次数: 126
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2025-02-14
文章二维码