基于需求侧响应的不同时间尺度动态分时电价时段优化研究
作者:
作者单位:

(华北电力大学经济与管理学院,北京 102206)

通讯作者:

曹婧祎(1998—),女,硕士研究生,主要从事电力技术经济与管理、电力市场、能源经济等研究;E?mail:2517903912@qq.com

中图分类号:

TM73;F426.61

基金项目:

国家自然科学基金(71973043)


Time slot optimization of dynamic time‑of‑use tariffs under different time scales based on demand side response
Author:
Affiliation:

(School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • | | | |
  • 文章评论
    摘要:

    分时电价政策多以固定时段划分方案来执行,但随着供给侧可再生能源的大量接入,需求侧广义负荷的柔性逐渐增强,供需关系呈现出动态变化。因此,为了研究不同时间尺度下的动态分时电价峰谷时段优化问题,本文在综合考虑新能源大比例并网和需求侧响应的基础上,采用改进的模糊C均值(fuzzy?C means,FCM)聚类算法构建峰谷时段划分模型。该模型对不同时间尺度下的净负荷日变化曲线进行聚类分析,以确定最优的时段划分结果。基于辽宁省2021年4月—2022年3月的净负荷数据进行的算例分析结果表明,新能源具有反调峰特性,存在引起净负荷曲线的峰谷差增大的问题。同时,用户对于分时电价政策时段划分的响应具有滞后性和时效性,因此,建议每隔3~4个月动态调整峰谷分时电价政策的时段划分,以更好地挖掘用户需求侧的响应潜力,促进削峰填谷;但如果峰谷时段的调整过于频繁,用户可能会难以及时调整其用电行为进行响应。

    Abstract:

    The time-of-use tariff policy is mostly implemented with a fixed time slot delineation scheme, but with the large access of renewable energy on the supply side and the enhanced flexibility of broad load on the demand side, the relationship between supply and demand shows dynamic changes. Therefore, in order to study the optimization of peak and valley time slots of dynamic time-of-use tariffs under different time scales, this paper adopts the improved fuzzy-C means (FCM) clustering algorithm to construct peak and valley time slot delineation model based on the comprehensive consideration of the large proportion of renewable energy connected to the networks and the demand-side response. The model determines the optimal time slot delineation results through the clustering analysis of the daily change curves of the net load under different time scales. According to the example analysis of Liaoning Province’s net load data from April 2021 to March 2022, renewable energy has anti-peaking characteristics, which causes the peak-to-valley difference of the net load curve to increase, and users’ response to the time slot delineation of the time-of-use tariff policy has a lag and timeliness. Therefore, it is recommended to dynamically adjust the time slot delineation of the time-of-peak tariff policy every 3?4 months to better tap the potential of users’ demand side response and promote peak shaving and valley filling. However, if the peak and valley time slots are frequently adjusted, it will be difficult for users to adjust their electricity consumption in time to respond.

    参考文献
    [1] YANG H J,WANG L,ZHANG Y Y,et al.Reliability evaluation of power system considering time of use electricity pricing[J].IEEE Transactions on Power Systems,2019,34(3):1991-2002.
    [2] 李艳梅,任恒君,张致远,等.考虑储能系统调度与风电消纳的峰谷分时电价优化模型研究[J].电网技术,2022,46(11):4141-4149.LI Yanmei,REN Hengjun,ZHANG Zhiyuan,et al.Optimization model of peak-valley time-of-use electricity prices considering energy storage system dispatching and wind power consumption[J].Power System Technology,2022,46(11):4141-4149.
    [3] 高原,杨贺钧,郭凯军,等.考虑负荷季节特性的电价型需求响应最优定价策略[J].电力建设,2023,44(1):55-63.GAO Yuan,YANG Hejun,GUO Kaijun,et al.Optimal pricing strategy of electricity price demand response considering seasonal characteristics of load[J].Electric Power Construction,2023,44(1):55-63.
    [4] 何英静,叶泽,魏文.考虑用户需求价格弹性的峰谷分时电价时段划分研究[J].价格月刊,2022(12):1-9.HE Yingjing,YE Ze,WEI Wen.Research on time division of peak-valley TOU tariff considering price elasticity of user demand[J].Prices Monthly,2022(12):1-9.
    [5] MA S C,YI B W,FAN Y.Research on the valley-filling pricing for EV charging considering renewable power generation[J].Energy Economics,2022,106:105781.
    [6] 丁宁,吴军基,邹云.基于DSM的峰谷时段划分及分时电价研究[J].电力系统自动化,2001,25(23):9-12+16.DING Ning,WU Junji,ZOU Yun.Research of peak and valley time period partition approach and TOU price on dsm[J].Automation of Electric Power Systems,2001,25(23):9-12+16.
    [7] 郑成,田宇,陈一怀.基于模糊聚类的峰谷时段划分[J].电气技术,2016,17(6):13-17.ZHENG Cheng,TIAN Yu,CHEN Yihuai.Research of peak and valley time period partition based on fuzzy clustering[J].Electrical Engineering,2016,17(6):13-17.
    [8] 江兵,李国荣,孙赵盟,等.基于长短期记忆神经网络和改进型K-means聚类算法的居民峰谷时段划分模型[J].现代电力,2021,38(6):620-629.JIANG Bing,LI Guorong,SUN Zhaomeng,et al.A residential peak and valley time division model based on long short-term memory and improved K-means clustering algorithm[J].Modern Electric Power,2021,38(6):620-629.
    [9] 程瑜,翟娜娜.基于用户响应的分时电价时段划分[J].电力系统自动化,2012,36(9):42-46+53.CHENG Yu,ZHAI Nana.Electricity price peak and valley periods division based on customer response[J].Automation of Electric Power Systems,2012,36(9):42-46+53.
    [10] 王尧,傅吉悦,曲绍杰,等.面向调峰弃风消纳的分时电价政策制定与评估[J].吉林电力,2018,46(4):1-5.WANG Yao,FU Jiyue,QU Shaojie,et al.Development and assessment of time-of-use electricity pricing policy for integrating wind power curtailment by peak load regulation[J].Jilin Electric Power,2018,46(4):1-5.
    [11] 王守相,王瀚樟,赵倩宇,等.面向配电网光伏接纳能力提升的分时电价优化方法[J].电力系统自动化,2023,47(10):38-46.WANG Shouxiang,WANG Hanzhang,ZHAO Qianyu,et al.Optimization method of time-of-use electricity price for improving photovoltaic hosting capacity of distribution network[J].Automation of Electric Power Systems,2023,47(10):38-46.
    [12] LI C R,DING G H,HE L X,et al.Peak-valley time-of-use tariff formulation method based on net load curve[C]//2022 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia).Shanghai,China.IEEE,2022:1196-1201.
    [13] 蒋向兵,汤波,余光正,等.面向新能源就地消纳的园区储能与电价协调优化方法[J].电力系统自动化,2022,46(5):51-64.JIANG Xiangbing,TANG Bo,YU Guangzheng,et al.Coordination and optimization method of park-level energy storage and electricity price for local accommodation of renewable energy[J].Automation of Electric Power Systems,2022,46(5):51-64.
    [14] 叶兴杰,徐永海,黄子桐,等.钢铁企业参与电力系统调度及风电消纳[J].电力自动化设备,2023,43(8):112-118.YE Xingjie,XU Yonghai,HUANG Zitong,et al.Iron and steel enterprises participating in power system scheduling and wind power consumption[J].Electric Power Automation Equipment,2023,43(8):112-118.
    [15] 章雪萌,孟祥娟,毛福斌,等.考虑多时间尺度的新能源特性对地区电网的影响评估[J].南方能源建设,2023,10(5):166-173.ZHANG Xuemeng,MENG Xiangjuan,MAO Fubin,et al.Impact assessment of new energy characteristics on regional power grid considering multiple time scales[J].Southern Energy Construction,2023,10(5):166-173.
    [16] 孙建军,张世泽,曾梦迪,等.考虑分时电价的主动配电网柔性负荷多目标优化控制[J].电工技术学报,2018,33(2):401-412.SUN Jianjun,ZHANG Shize,ZENG Mengdi,et al.Multi-objective optimal control for flexible load in active distribution network considering time-of-use tariff[J].Transactions of China Electrotechnical Society,2018,33(2):401-412.
    [17] ZHANG Z Y,LV L J,WANG X H.Researh on dynamic time-sharing tariff orderly charging strategy based on NSGA2 in PV-storage-charging stations[J].Electric Power Systems Research,2023,225:109784.
    [18] KAUR A P,SINGH M.Time-of-use tariff rates estimation for optimal demand-side management using electric vehicles[J].Energy,2023,273:127243.
    [19] 邓慧琼,张晓飞,曾凡淦,等.基于动态分时电价的电动汽车有序充放电调度策略[J].河北科技大学学报,2022,43(3):240-248.
    [20] 陈嘉德,徐海博,孙瑞雪,等.基于多时段动态电价的电动汽车有序充电策略优化[J].东北电力技术,2023,44(2):40-46.CHEN Jiade,XU Haibo,SUN Ruixue,et al.Strategy optimization of electric vehicles orderly charging based on multi period dynamic electricity price[J].Northeast Electric Power Technology,2023,44(2):40-46.
    [21] 万玉良,尚国政,刘蒙聪,等.考虑源荷不确定性的分时电价动态修正机制研究[J].太阳能学报,2022,43(11):493-500.WAN Yuliang,SHANG Guozheng,LIU Mengcong,et al.Research on dynamic correction mechanism of time-of-use electricity price considering uncertainty of source and load[J].Acta Energiae Solaris Sinica,2022,43(11):493-500.
    [22] XUE W L,ZHAO X,LI Y,et al.Research on the optimal design of seasonal time-of-use tariff based on the price elasticity of electricity demand[J].Energies,2023,16(4):1625.
    [23] 舒印彪,张智刚,郭剑波,等.新能源消纳关键因素分析及解决措施研究[J].中国电机工程学报,2017,37(1):1-9.SHU Yinbiao,ZHANG Zhigang,GUO Jianbo,et al.Study on key factors and solution of renewable energy accommodation[J].Proceedings of the CSEE,2017,37(1):1-9.
    [24] 白雪岩,樊艳芳,刘雨佳,等.考虑可靠性及灵活性的风光储虚拟电厂分层容量配置[J].电力系统保护与控制,2022,50(8):11-24.BAI Xueyan,FAN Yanfang,LIU Yujia,et al.Wind power storage virtual power plant considering reliability and flexibility tiered capacity configuration[J].Power System Protection and Control,2022,50(8):11-24.
    [25] 于德新,田秀娟,杨兆升.基于改进FCM聚类的交通控制时段划分[J].华南理工大学学报(自然科学版),2016,44(12):53-60.YU Dexin,TIAN Xiujuan,YANG Zhaosheng.Division of traffic control periods based on improved FCM clustering[J].Journal of South China University of Technology (Natural Science Edition),2016,44(12):53-60.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

曹婧祎,何永秀,周静涵,等.基于需求侧响应的不同时间尺度动态分时电价时段优化研究[J].电力科学与技术学报,2024,39(6):242-250,268.
CAO Jingyi, HE Yongxiu, ZHOU Jinghan, et al. Time slot optimization of dynamic time‑of‑use tariffs under different time scales based on demand side response[J]. Journal of Electric Power Science and Technology,2024,39(6):242-250,268.

复制
分享
文章指标
  • 点击次数:144
  • 下载次数: 99
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2025-02-14
文章二维码