电动汽车充电站参与电网辅助调频的控制方法
作者:
作者单位:

(华北电力大学控制与计算机工程学院,北京 100096)

通讯作者:

姚若钰(1998—),女,硕士研究生,主要从事模型预测控制及其在电力系统的应用研究;E?mail:yry@ncepu.edu.cn

中图分类号:

TM73

基金项目:

中央高校基本科研业务费专项资金资助(2023JC002)


Control method of electric vehicle charging station participating in auxiliary frequency regulation for power grid
Author:
Affiliation:

(School of Control and Computer Engineering, North China Electric Power University, Beijing 100096, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • | | | |
  • 文章评论
    摘要:

    电动汽车(electric vehicle,EV)参与电网辅助调频,即利用电动汽车的“源—荷”特性来快速消除系统频率波动。然而,在保持系统性能条件下,如何保障大规模电动汽车辅助调频的经济性仍然是个挑战。为此,针对大规模EV聚合充电站辅助参与电网的负荷频率控制(load frequency control,LFC)问题,提出分布式经济模型预测控制(distributed economic model predictive control,DEMPC)方法,在经济模型预测控制的基础上,以单层结构控制双层分层,实现多个区域电网的分布式协同控制。通过经济成本函数的凸松弛实现控制器的优化,利用每个子系统控制器与相邻子系统的协同工作确保整个系统的控制性能,以合适的终端成本函数保证系统的渐进稳定性。仿真结果可以表明该方法的有效性和优越性。

    Abstract:

    Electric vehicle (EV) participating in grid ancillary frequency regulation involves leveraging the "source-load" characteristics of EVs to quickly eliminate system frequency fluctuations. However, ensuring the economic feasibility of large-scale EV-assisted frequency regulation while maintaining system performance remains a challenge. To address this, a distributed economic model predictive control (DEMPC) method is proposed for large-scale EV aggregated charging stations assisting in grid load frequency control (LFC). Based on economic model predictive control, the DEMPC method employs a single-layer control structure to oversee a two-tiered hierarchical system, enabling distributed collaborative control across multiple regional power grids. The optimization of controllers is achieved through convex relaxation of the economic cost function. The collaborative work of each subsystem controller with adjacent subsystems ensures the control performance of the entire system, and an appropriate terminal cost function guarantees the asymptotic stability of the system. Simulation results demonstrate the effectiveness and superiority of this method.

    参考文献
    [1] 邵嗣杨,马翔,袁伟,等.含电动汽车的不确定性微电网鲁棒优化调度方法[J].电气工程学报,2023,18(2):201-209. SHAO Siyang,MA Xiang,YUAN Wei,et al.Robust optimal dispatching method for uncertain microgrid including electric vehicles[J].Journal of Electrical Engineering,2023:1-9.
    [2] 蔡文亮,赵正晖,汪洋,等.面向新型能源结构的系统调频技术回顾与展望[J].电测与仪表,2023,60(10):1-9. CAI Wenliang,ZHAO Zhenghui,WANG Yang,et al.Review and prospect of frequency modulation technology for new energy structure[J].Electrical Measurement &Instrumentation,2023,60(10):1-9.
    [3] 吴赋章,杨军,林洋佳,等.考虑用户有限理性的电动汽车时空行为特性[J].电工技术学报,2020,35(7):1563-1574. WU Fuzhang,YANG Jun,LIN Yangjia,et al.Research on spatiotemporal behavior of electric vehicles considering the users’ bounded rationality[J].Transactions of China Electrotechnical Society,2019,35(7):1563-1574.
    [4] 裴振坤,王学梅,康龙云.考虑用户充电计划的电动汽车辅助调频控制策略[J].电力工程技术,2023,42(1):88-97. PEI Zhenkun,WANG Xuemei,KANG Longyun.Auxiliary frequency regulation control strategy for electric vehicles considering users' charging plans[J]. Electric Power Engineering Technology,2023,42(1):88-97.
    [5] 刘辉,魏岩岩,汪旎,等.电动汽车入网一次调频控制策略研究[J].电力系统保护与控制,2015,43(23): 90-95. LIU Hui,WEI Yanyan WANG Ni,et al.V2G control for EVs participating in primary frequency regulation[J].Power System Protection and Control,2015,43 (23): 90-95.
    [6] 程杉,李沣洋,刘炜炜,等.电动汽车协助火电机组参与调频辅助服务优化控制策略[J].电力系统保护与控制,2024,52(6):142-151.CHENG Shan,LI Fengyang,LIU Weiwei,et al.Optimal control strategy of thermal power units with electric vehicles participatingin frequency regulation auxiliary services[J].Power System Protection and Control,2024,52(6):142-151.
    [7] 钱国明,孟杰,朱海东,等.基于调频服务的新型光?储电站容量规划及运行策略[J].中国电力,2023,56(6):132-138+147. QIAN Guoming,MENG Jie, ZHU Haidong,et al.Capacity planning and operation strategy of new PV-storage power station based on frequency modulation service[J]. Electric Power, 2023, 56(6): 132-138+147.
    [8] 杨丽,孙元章,徐箭,等.基于在线强化学习的风电系统自适应负荷频率控制[J].电力系统自动化,2020,44(12):74-83. YANG Li,SUN Yuanzhang,XU Jian,et al.Adaptive load frequency control of wind power system based on online reinforcement learning[J].Automation of Electric Power Systems,2020,44(12):74-83.
    [9] 方仍存, 桑子夏, 刘知行, 等. 基于改进协同量子粒子群算法的多微网负荷频率控制[J]. 电力建设, 2023, 44(7): 87-97. FANG Rengcun, SANG Zixia, LIU Zhixing, et al. Load-frequency control of multi-microgrid systems based on improved cooperative quantum-behaved particle swarm optimization[J]. Electric Power Construction, 2023, 44(7): 87-97.
    [10] ZHANG H,LIU J,XU S.H-infinity load frequency control of networked power systems via an event-triggered scheme[J].IEEE Transactions on Industrial Electronics,2020,67(8):7104-7113.
    [11] 孙冉,王建波,郭泓佐,等. 基于改进事件触发机制的电力系统负荷频率控制[J]. 电网与清洁能源,2024,40(11):75-85.SUN Ran,WANG Jianbo,GUO Hongzuo,et al. Load frequency control of power systems based on improved event-triggering scheme [J].Power System and Clean Energy,2024,40(11):75-85.
    [12] 周一辰,杨洋,李永刚,等.区域一致趋同的分布式负荷频率控制方法研究[J].智慧电力,2024,52(3):80-86+124. ZHOU Yichen,YANG Yang,LI Yonggang,et al.Distributed load frequency control method in a regionally consistent manner[J].Smart Power,2024,52(3):80-86+124.
    [13] 王政豪,刘永慧,苏庆堂.基于滑模控制的多区域V2G系统的负荷频率控制[J].控制工程,2022,29(11): 1981-1988. WANG Zhenghao,LIU Yonghui,SU Qingtang.Load frequency control for a multi-area V2G system based on sliding mode control[J].Control Engineering of China,2022,29 (11): 1981-1988.
    [14] LIU S,LUO W,WU L.Co-design of distributed model-based control and event-triggering scheme for load frequency regulation in smart grids[J].IEEE Transactions on Systems,Man,and Cybernetics: Systems,2020,50(9):3311-3319.
    [15] 贾玉斌.经济模型预测控制的研究及其在电力系统中的应用[D].南京:东南大学,2020. JIA Yubin.Economic model predictivecontrol and its applicationin power system[D].Nanjing:Southeast University,2020.
    [16] AMRIT R,RAWLINGS J B,ANGELI D.Economic optimization using model predictive control with a terminal cost[J].Annual Reviews in Control,2011,35(2):178-186.
    [17] SOKOLER L E,EDLUND K,JORGENSEN J B.Application of economic MPC to frequency control in a single-area power system[C]// 54th IEEE Conference on Decision and Control(CDC),5-3-51 Nakanoshima,Kita-Ku,Osaka,Japan,2015.
    [18] 左强,李波,杨世海.大规模空调负荷参与新能源电力系统调频的无模型自适应控制方法[J].电力科学与技术学报,2023,38(2):224-231. ZUO Qiang,LI Bo,YANG Shihai.Model-free adaptive frequency control of renewable energy power systems with participation of large-scale air conditioner loads[J].Journal of Electric Power Science and Technology,2023,38(2):224-231.
    [19] ALBALAWI F,DURAND H,CHRISTOFIDES P D.Distributed economic model predictive control for operational safety of nonlinear processes[J].Aiche Journal,2017,63(8):3404-3418.
    [20] 余洋,张瑞丰,陆文韬,等.基于稳定经济模型预测控制的集群电动汽车辅助电网调频控制策略[J].电工技术学报,2022,37(23): 6025-6040. YU Yang,ZHANG Ruifeng,LU Wentao,et al.Auxiliary frequency regulation control strategy of aggregated electric vehicles based on lyapunov-based economic model predictive control[J].Transactions of China Electrotechnical Society,2022,37 (23): 6025-6040.
    [21] OSHNOEI A,KHERADMANDI M,MUYEEN S M.Robust control scheme for distributed battery energy storage systems in load frequency control[J].IEEE Transactions on Power Systems,2020,35(6): 4781-4791.
    [22] K?HLER J.Distributed economic model predictive control under inexact minimization with application to power systems[D].Stuttgart:University of Stuttgart,2017.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

姚若钰,王馨杉.电动汽车充电站参与电网辅助调频的控制方法[J].电力科学与技术学报,2025,40(1):19-28.
YAO Ruoyu, WANG Xinshan. Control method of electric vehicle charging station participating in auxiliary frequency regulation for power grid[J]. Journal of Electric Power Science and Technology,2025,40(1):19-28.

复制
分享
文章指标
  • 点击次数:383
  • 下载次数: 384
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2025-03-18
文章二维码